Morphological Abnormalities in Archaiasine Foraminifers from the Florida Keys, USA
Heidi Crevison Souder and Pamela Hallock Muller
University of South Florida College of Marine Science
140 7th Ave. S, St. Petersburg, FL 33701, hsouder@marine.usf.edu

Abstract
Historically, Archaias angulatus has been a major contributor to foraminiferal assemblages and sedimentation in coral-reef environments throughout the Caribbean and western North Atlantic. A variety of anomalous features were observed in the tests of A. angulatus individuals collected live from the Florida reef tract in 2004 and 2005. Six types of anomalies were documented using scanning electron microscopy: microborings, bacterial infestation, calcification (structural) anomalies, pitted surfaces, dissolution, and test deformation. Calcification abnormalities included mineralogical projections, lacy crusts, and repair marks. These abnormalities were found among both juvenile and adult A. angulatus, and similar features were also found among Cyclorbiculina compressa and Laevipeneroplis proteus specimens collected live in the same samples.

Previous studies have documented the sensitivity of miliolid test morphology to environmental influences. These larger miliolid taxa tend to be quite eurytopic with respect to temperature, and the range of sites from which anomalous specimens were collected argues against local pollutants or variations in salinity or solar irradiance. Given the inherent solubility of their magnesian-calcite test mineralogy, we speculate that these foraminifers may be sensitive indicators of declining carbonate saturation in seawater, which results locally from increasing benthic respiration rates and globally from mixing concentration of atmospheric CO$_2$.

Introduction
Archaias angulatus (Fichtel and Moll) are symbiont-bearing porcelaneous foraminifers with planispiral involute tests covered with pseudopores (e.g., Fichtel and Moll, 1989). Historically, Archaias angulatus has been considered a major contributor to foraminiferal assemblages and sediments in coral-reef environments throughout the Caribbean and western North Atlantic, Florida Keys, and the Florida-Florida Keys carbonate province.

Cockey and others (1996) reported dramatic changes in the foraminiferal assemblages of the Florida reef tract over the past 30 years. Analyses of surface sediments revealed a shift from symbiont-bearing taxa, such as Archaias angulatus, to smaller detritus consuming taxa. Cockey and Hallock (1988) investigated post-mortem (taphonomic) surface degradation of A. angulatus specimens in sediment samples collected from Key Largo, Florida, and La Parguera, Puerto Rico, in the early and mid 1980s. Analysis of field samples revealed several different types of taphonomic features including dissolution, breakage, impact features, pitted surfaces, scratches and microborings. None of these characteristics are out of the ordinary for biological sedimentary constituents such as foraminiferal tests, since many biological, physical, chemical, and geological processes immediately begin to alter a test after the individual dies.

In a sample collected from New Found Harbor in the Florida Keys in May 2004, surface texture anomalies appeared to be uniquely common among live Archaias angulatus individuals. Under light microscopy, many species of symbiont-bearing porcelaneous taxa, including also Laevipeneroplis proteus (Wissler) and Cyclorbiculina compressa (Oberhage), appeared to have a rough, ridged finish to their tests. Some of these individuals exhibited a range of physical abnormalities including rows of mangled-looking chambers, ragged suture lines, and complete test malformations.

The purpose of this paper is to document anomalous test-surface textures and morphological abnormalities in A. angulatus collected live along the Florida reef tract.

Materials and Methods
We examined samples collected from several sites and depths along the Florida reef tract: New Found Harbor (1 m water depth) and Loo Loo Key in May 2004, and Molasses Reef (15 m depth) off Key Largo and Tennessee Reef (10 and 30 m depth) off of Long Key in July 2005 (Fig. 1). Specimens were determined to be live when collected by their algal-symbiotic coloration and the presence of rhizopodia. Juvenile and adult specimens were examined using light microscopy for any surface texture or morphological abnormalities. Prior to examination using scanning electron microscopy (SEM), specimens were rinsed in deionized water and air dried on paleontological slides. They were mounted onto aluminum SEM stubs using double-sided adhesive tabs and spatter coated with gold-palladium (approximately 80:20) using a Hummer 8.2 Sputtering System. Samples were then examined using a Hitachi S-1500N scanning electron microscope.

Results

Normal A. angulatus possess clearly defined round pseudopores, crisp concentric suture lines, and smooth surface texture. However, six basic types features were observed on live specimens: microborings, bacterial infestation, calcification (structural) anomalies, pitted surfaces, dissolution, and test deformation.

Figure 1. Normal specimens of Archaias angulatus: A) live individual showing chlorophyte endosymbiont; B) close up of pseudopores and suture lines; C) SEM of normal adult; D) SEM of juvenile aperture

Figure 2. A) SEM of microborings on adult A. angulatus from New Found Harbor; B) SEM of microborings on Cyclorbiculina compressa adult from New Found Harbor; C) and D) SEM of test wall infection on A. angulatus from Tennessee Reef

Figure 3. Structural anomalies include A) a low lying crest on adult A. angulatus from Tennessee Reef and B) mineralogical projections on an adult from Tennessee Reef; C) SEM of a young adult A. angulatus with a pitted surface; D) SEM close up of pitted surface showing areas of repair

Figure 4. A) SEM of dissolution of an already pitted surface on an adult A. angulatus from Tennessee Reef; B) SEM of deformed juvenile A. angulatus from New Found Harbor; C) SEM of Cyclorbiculina compressa smooth specimen from New Found Harbor; D) SEM of a deformed A. angulatus from New Found Harbor

Conclusions
Deformed tests and calcification anomalies were observed in juvenile and adult Archaias angulatus and other miliolids with algal endosymbionts collected live along the Florida reef tract. Calcification anomalies included mineralogical projections and lacy crusts. Features typically considered taphonomic include microborings, pitted surfaces, bacterial infestation, and dissolution; evidence of test repair was also documented. Prevalence of such features may indicate that populations of these foraminifers are experiencing increasing environmental stress. These larger miliolids taxa tend to be eurytopic with respect to temperature and solar irradiance. The range of sites from which these specimens were collected argues against local pollutants, variations in salinity, or solar irradiance as causal factors. Miliolid test morphology has previously been observed to be sensitive to environmental influences. Given the inherent solubility of their magnesian-calcite test mineralogy, these foraminifers may be among the most sensitive indicators of declining carbonate saturation in seawater, which results locally from increasing benthic respiration rates and globally from mixing concentration of atmospheric CO$_2$. 