Trapping and Escape of Buoyant Plumes in Stratified Water

Rich McLaughlin Center for Interdisciplinary Applied Mathematics and Joint Fluids Lab, UNC Chapel Hill

Close Collaboration with Roberto Camassa and Brian White

postdocs: Ashwin Vaidya (Montclair State), Keith Mertens, Jennifer Prairie former grads: Joyce Lin (Utah), Nick Moore(NYU), Z. Lin (IMA,Zhejiang Univ.) current grad: Claudia Falcon, Chung-Nan Tzou, Claudio Viotti, Duo Zhao undergrads: Johnny Reis, Robert Overman, Bailey Watson, Casey Smith, David Nenon

Thanks to NSF:

NSF RTG DMS-0502266 NSF RTG DMS-0943851 NSF RAPID CBET-1045653 NSF CMG ARC-1025523 NSF DMS- 1009750

Internal Splash

- 1.0396 g/
 cc
- Stratified
- Sphere heavier than fluid at all depths
- Fast Playback
- Re=300

Abaid,Adalsteinsson,Agyapong,McL Phys of Fluids 2004 Srdic-Mitrovic, Mohamed,Fernando, JFM 1999 (no bounce) **For keynote with movies: See pink-lady.amath.unc.edu/~rmm/sost**

Internal Splash

- 1.0396 g/
 cc
 - Stratified
 - Sphere heavier than fluid at all depths
 - Fast Playback
- Re=300

Abaid,Adalsteinsson,Agyapong,McL Phys of Fluids 2004 Srdic-Mitrovic, Mohamed,Fernando, JFM 1999 (no bounce) **For keynote with movies: See pink-lady.amath.unc.edu/~rmm/sost**

Left: low speed untreated oil, right: high speed+dispersant

Left: low speed untreated oil, right: high speed+dispersant

Slide: from Harvey Seim, Marine Sciences, UNC

Slide: from Harvey Seim, Marine Sciences, UNC

JAG, 2010

Integral Models: Morton, Taylor, Turner, 1953

$$\frac{d(b^2w)}{dz} = 2\alpha bw,$$

$$\frac{d(b^2w^2)}{dz} = 2g\lambda^2 b^2\theta,$$

$$\frac{d(b^2w\theta)}{dz} = -\frac{1+\lambda^2}{\lambda^2}\frac{d\epsilon}{dz}b^2w$$

 ϵ -- ambient stratification

b, w, θ -- jet radius, center speed, density λ , α --entrainment, mixing coefficients

Miscible Limit: Critical Escape Height For Buoyant Jets

$$\begin{split} L &= L_0 \int_1^A \frac{ds}{\sqrt{s^{5/4} + \epsilon - 1}} \\ \epsilon &= \frac{5(1+\lambda^2)(\Delta\bar{\rho})r_0g}{16\sqrt{2}\alpha w_0^2} \quad A = (1+\epsilon(\frac{\theta_0^2}{\theta_f^2} - 1))^{4/5} \\ \theta_0 &= \frac{(1+\lambda^2)}{\lambda^2}\Delta\bar{\rho} \quad \theta_f = \frac{\rho_b - \rho_t}{\rho_b} \quad \Delta\bar{\rho} = \frac{\rho_b - \rho_j}{\rho_b} \\ L_0 &= \left(\frac{5r_0w_0^2}{16\sqrt{2}g(1+\lambda^2)\alpha(\Delta\bar{\rho})}\right)^{1/2} \end{split}$$

Adalsteinnson. Camassa, Falcon, Lin, McLaughlin, Mertens, Nenon, Smith, Walsh, Watson, White, to appear: "Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, AGU Monograph Series

Asymptotics-- Camassa, McL, Tzou, Zhao, in prep

Current Events: Ocean Carbon Pump

Plume Destabilization

Figure 3. Time series showing timescale of plume instability. Top: OSW 4:3:2, t = 30, 450, 870, 900, 1800, 3600, 7200 sec. Bottom: OSW 4:3:17, t = 30, 450, 900, 1800, 3600, 7200, 14400 sec. Notice the onset of instability in the top row, first evident at t = 870 sec.

Top: 48 cm travel, Bottom 15cm Left to right: increasing flow rate

Top: 48 cm travel, Bottom 15cm Left to right: increasing flow rate

Stratified Vortex Rings

Camassa, McL, **Keith Mertens**, D. Nenon, C. Smith, C.Viotti, in prep

Stratified Vortex Rings

Camassa, McL, **Keith Mertens**, D. Nenon, C. Smith, C.Viotti, in prep

DNS: Varden (A.Almgren LBL Code) modified by Claudio Viotti

mesh:256x256x1024, parallel on 256 processors run time: 6 hours periodic x-y, slip wall velocity lids no flux bc for scalar

DNS: Varden (A. Almgren LBL Code) modified by Claudio Viotti

mesh:256x256x1024, parallel on 256 processors run time: 6 hours periodic x-y, slip wall velocity lids no flux bc for scalar

Conclusions and Future:

Buoyant plume formation in stratification Trapping timescales vary with mixture Plume destabilization may occur Internal waves-- larger scale experiments Inflow full DNS CFD marginally resolvable

UNC Joint Fluids Lab, Chapman Hall Level B, rm B02

Why Did Huge Oil Plumes Form After the Gulf Spill

Nev

Dispersants broke oil into micro-droplets suspended by equally dense water.

Oil jets pre-mixed with soap are fired into layered fluid, mimicking the spreading of a Gulf oil plume. Photograph by Steve Harenberg, Rich McLaughlin, Johnny Reis, William Schlieper, Will Owens, Brian White, UNC Joint Fluids Laboratory and UNC Center for Interdisciplinary Applied Mathematics Roberto Camassa/The University of North Carolina