# Satellite Remote Sensing of Surface $pCO_2$ in Coastal Oceans: Evaluation of Different Approaches Shuangling Chen and Chuanmin Hu



Optical Oceanography Lab, College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, Florida, 33701, USA



### **Introduction & Objectives**

Surface partial pressure of CO2 ( $pCO_2$ ) is a critical parameter in the quantification of air-sea CO2 flux, which plays an important role in the global carbon budget and understanding of ocean acidification. Different approaches have been used to quantify surface  $pCO_2$  from satellites, while the strength, weakness, and general applicability of each in different coastal ecosystems was not evaluated yet. The objective of this study is to: 1) develop  $pCO_2$  models for Gulf of Maine (GoM) and Gulf of Mexico (GOM) using different approaches; 2) quantify and compare the performance of each approach; 3) quantify the uncertainties of the generalized approach under various conditions; 4) understand the  $8^{200}_{200}$  RMSE=24.18 uatm (7.5%) applicability of the generalized approach through the study of seasonal variation of surface  $pCO_2$  in these two oceanic environments.









### Monthly $pCO_2$ in 2013



### Conclusion

NASA

UPD= 7.0%

MRD= 7.6%

N=472

12/01

- Comparing to the approaches of MLR, MNR, PCR, MPNN and MeSAA, RFRE is found to have better performance in both GoM and GOM.
- RFRE-based surface  $pCO_2$  models were developed with uncertainty of ~12.18 uatm and  $pCO_2$  of 200~550 uatm for GoM, and uncertainty of 9.12 uatm and  $pCO_2$  of 145~550 uatm for GOM, when applied to MODIS 1-km data.
- The surface  $pCO_2$  model is capable to quantify low  $pCO_2$ around the Mississippi delta and the spatial variation patterns in the GoM and GOM.
- Surface  $pCO_2$  in the GoM and GOM showed the opposite

# **Statistics of Different Approaches**

Gulf of Maine

| Approach                                            | Statistics                                                                                                                                                                                                                                                                                                                                     | RMSE <sup>g</sup><br>(µatm)                                                                                                                                                                                                  | <b>R</b> <sup>2</sup>                                                                                                                                                                                                                               | MB <sup>h</sup><br>(µatm)                                                                                                                                                                                                                                              | MR <sup>i</sup>                                                                                                                                                                                       | Ν                                                                       | Model Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study Area                                                        |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| MLR <sup>a</sup>                                    | Model training                                                                                                                                                                                                                                                                                                                                 | 47.64                                                                                                                                                                                                                        | 0.36                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                  | 4036                                                                    | SST, SSS, CHL, Julday                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GoM                                                               |
|                                                     | Model validation                                                                                                                                                                                                                                                                                                                               | 47.75                                                                                                                                                                                                                        | 0.36                                                                                                                                                                                                                                                | 0.07                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                  | 4036                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
| MNR <sup>b</sup>                                    | Model training                                                                                                                                                                                                                                                                                                                                 | 40.35                                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                                                | -0.00                                                                                                                                                                                                                                                                  | 1.01                                                                                                                                                                                                  | 4036                                                                    | SST, $\log_{10}(Kd)$ , $\log_{10}(CHL)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GoM                                                               |
|                                                     | Model validation                                                                                                                                                                                                                                                                                                                               | 40.45                                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                                                | -0.13                                                                                                                                                                                                                                                                  | 1.01                                                                                                                                                                                                  | 4036                                                                    | cos(Julday)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |
| PCR <sup>c</sup>                                    | Model training                                                                                                                                                                                                                                                                                                                                 | 54.68                                                                                                                                                                                                                        | 0.19                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                   | 1.03                                                                                                                                                                                                  | 4036                                                                    | SST, SSS, CHL, Kd, ag440                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GoM                                                               |
|                                                     | Model validation                                                                                                                                                                                                                                                                                                                               | 54.95                                                                                                                                                                                                                        | 0.18                                                                                                                                                                                                                                                | -0.14                                                                                                                                                                                                                                                                  | 1.03                                                                                                                                                                                                  | 4036                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
| MPNN <sup>d</sup>                                   | Model training                                                                                                                                                                                                                                                                                                                                 | 11.50                                                                                                                                                                                                                        | 0.95                                                                                                                                                                                                                                                | -0.00                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                  | 3040                                                                    | SST, $\log_{10}(Kd)$ , $\log_{10}(CHL)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GoM                                                               |
|                                                     | Model validation                                                                                                                                                                                                                                                                                                                               | 12.23                                                                                                                                                                                                                        | 0.95                                                                                                                                                                                                                                                | -0.24                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                  | 1519                                                                    | cos(Julday)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |
| RFRE                                                | Model training                                                                                                                                                                                                                                                                                                                                 | 9.12                                                                                                                                                                                                                         | 0.97                                                                                                                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                  | 4559                                                                    | SST, $\log_{10}(Kd)$ , $\log_{10}(CHL)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GoM                                                               |
|                                                     | Model validation                                                                                                                                                                                                                                                                                                                               | 12.18                                                                                                                                                                                                                        | 0.95                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                  | 4559                                                                    | cos(Julday)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GOM                                                               |
| Gulf of Mexico                                      |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                | DMCE                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
| Approach                                            | Statistics                                                                                                                                                                                                                                                                                                                                     | (µatm)                                                                                                                                                                                                                       | R <sup>2</sup>                                                                                                                                                                                                                                      | (µatm)                                                                                                                                                                                                                                                                 | MR                                                                                                                                                                                                    | Ν                                                                       | Model Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study Area                                                        |
| Approach<br>Stepwise                                | Statistics<br>Model training                                                                                                                                                                                                                                                                                                                   | (µatm)<br>14.78                                                                                                                                                                                                              | <b>R</b> <sup>2</sup><br>0.75                                                                                                                                                                                                                       | <b>MB</b><br>(μatm)<br>0.00                                                                                                                                                                                                                                            | <b>MR</b><br>1.00                                                                                                                                                                                     | <b>N</b><br>704                                                         | Model Inputs<br>SST, SSS, log <sub>10</sub> (ag440),                                                                                                                                                                                                                                                                                                                                                                                                                                        | Study Area                                                        |
| Approach<br>Stepwise<br>MLR                         | StatisticsModel trainingModel validation                                                                                                                                                                                                                                                                                                       | <ul> <li>κινι ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε</li></ul>                                                                                                                                                                  | <b>R</b> <sup>2</sup><br>0.75<br>0.73                                                                                                                                                                                                               | NIB (μatm) 0.00 -0.13                                                                                                                                                                                                                                                  | MR<br>1.00<br>1.00                                                                                                                                                                                    | N<br>704<br>704                                                         | Model Inputs<br>SST, SSS, log <sub>10</sub> (ag440),<br>cos(Julday)                                                                                                                                                                                                                                                                                                                                                                                                                         | Study Area<br>Eastern GOM                                         |
| Approach<br>Stepwise<br>MLR                         | StatisticsModel trainingModel validationModel training                                                                                                                                                                                                                                                                                         | <ul> <li>κινι ε ε</li> <li>(μatm)</li> <li>14.78</li> <li>15.59</li> <li>10.51</li> </ul>                                                                                                                                    | <b>R</b> <sup>2</sup><br>0.75<br>0.73<br>0.89                                                                                                                                                                                                       | NIB         (μatm)         0.00         -0.13         0.00                                                                                                                                                                                                             | MR<br>1.00<br>1.00<br>1.00                                                                                                                                                                            | N<br>704<br>704<br>732                                                  | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,                                                                                                                                                                                                                                                                                                                                                                                          | Study Area         Eastern GOM                                    |
| Approach<br>Stepwise<br>MLR<br>MNR                  | StatisticsModel trainingModel validationModel trainingModel validation                                                                                                                                                                                                                                                                         | <ul> <li>κινι κ</li> <li>(μatm)</li> <li>14.78</li> <li>15.59</li> <li>10.51</li> <li>11.79</li> </ul>                                                                                                                       | <b>R</b> <sup>2</sup><br>0.75<br>0.73<br>0.89<br>0.88                                                                                                                                                                                               | NIB         (μatm)         0.00         -0.13         0.00         0.03                                                                                                                                                                                                | MR         1.00         1.00         1.00         1.00                                                                                                                                                | N<br>704<br>704<br>732<br>784                                           | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$                                                                                                                                                                                                                                                                                                                                                                         | Study Area         Eastern GOM         Eastern GOM                |
| Approach<br>Stepwise<br>MLR<br>MNR                  | StatisticsModel trainingModel validationModel trainingModel trainingModel training                                                                                                                                                                                                                                                             | <ul> <li>κινι κ</li> <li>(μatm)</li> <li>14.78</li> <li>15.59</li> <li>10.51</li> <li>11.79</li> <li>14.69</li> </ul>                                                                                                        | <b>R</b> <sup>2</sup><br>0.75<br>0.73<br>0.89<br>0.88<br>0.75                                                                                                                                                                                       | NIB         (μatm)         0.00         -0.13         0.00         0.03         0.00                                                                                                                                                                                   | MR         1.00         1.00         1.00         1.00         1.00                                                                                                                                   | N<br>704<br>704<br>732<br>784<br>704                                    | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,                                                                                                                                                                                                                                                                                                                            | Study Area         Eastern GOM                                    |
| Approach Stepwise MLR MNR PCR                       | StatisticsModel trainingModel validationModel trainingModel trainingModel trainingModel trainingModel training                                                                                                                                                                                                                                 | KIVISE(µatm)14.7815.5910.5111.7914.6915.40                                                                                                                                                                                   | <b>R</b> <sup>2</sup><br>0.75<br>0.73<br>0.89<br>0.88<br>0.75<br>0.74                                                                                                                                                                               | NIB         (µatm)         0.00         -0.13         0.00         0.003         0.003         -0.09                                                                                                                                                                   | MR         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                         | N<br>704<br>704<br>732<br>784<br>704<br>704<br>704                      | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$                                                                                                                                                                                                                                                                                       | Study AreaEastern GOMEastern GOM                                  |
| Approach Stepwise MLR PCR MeSAAf                    | StatisticsModel trainingModel validationModel trainingModel trainingModel trainingModel trainingModel trainingModel trainingModel trainingModel trainingModel trainingModel training                                                                                                                                                           | KIVISE (µatm) 14.78 15.59 10.51 11.79 14.69 15.40 12.36                                                                                                                                                                      | R20.750.730.890.880.750.74                                                                                                                                                                                                                          | NIB         (µatm)         0.00         -0.13         0.00         0.03         0.03         0.00         0.00         0.00                                                                                                                                            | MR         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                            | N<br>704<br>704<br>732<br>784<br>704<br>704<br>704<br>676               | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ ,<br>$SST, SSS, log_{10}(CHL)$                                                                                                                                                                                                                              | Study AreaEastern GOMEastern GOMNorthern GOM                      |
| Approach<br>Stepwise<br>MLR<br>MNR<br>PCR<br>MeSAAf | StatisticsModel trainingModel validationModel trainingModel trainingModel trainingModel trainingModel developmentModel training                                                                                                                                                                                                                | KIVISE(µatm)14.7815.5910.5111.7914.6915.4012.3610.35                                                                                                                                                                         | R20.750.730.890.880.750.740.780.84                                                                                                                                                                                                                  | NIB         (µatm)         0.00         -0.13         0.00         0.03         0.00         0.00         0.00         0.00         -0.00         -0.00                                                                                                                | MR         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                  | N<br>704<br>704<br>732<br>784<br>704<br>704<br>704<br>676<br>338        | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ SST, SSS, $log_{10}(CHL)$                                                                                                                                                                                                                                   | Study AreaEastern GOMEastern GOMNorthern GOM                      |
| Approach Stepwise MLR  PCR  MeSAAf  MNNR            | StatisticsModel trainingModel validationModel trainingModel trainingModel trainingModel trainingModel validationModel validationModel trainingModel training                                                     | Kivise(µatm)14.7815.5910.5111.7914.6915.4012.3610.3510.98                                                                                                                                                                    | R20.750.730.890.880.750.740.740.780.840.83                                                                                                                                                                                                          | NIB         (μatm)         0.00         -0.13         0.00         0.003         0.003         0.000         -0.09         0.000         -0.00         -0.00         -0.01                                                                                             | MR         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 | N<br>704<br>704<br>732<br>784<br>704<br>704<br>704<br>676<br>338<br>328 | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ SST, SSS, $log_{10}(CHL)$ SST, SSS, $log_{10}(CHL)$ ,<br>$cos(Julday)$                                                                                                                                                                                      | Study AreaEastern GOMEastern GOMNorthern GOMNorthern GOM          |
| Approach Stepwise MLR  PCR  MeSAAf  MNR             | StatisticsModel trainingModel validationModel trainingModel training | <ul> <li>κινιsε</li> <li>(μatm)</li> <li>14.78</li> <li>15.59</li> <li>10.51</li> <li>11.79</li> <li>14.69</li> <li>14.69</li> <li>15.40</li> <li>12.36</li> <li>10.35</li> <li>10.98</li> <li>6.68</li> </ul>               | <ul> <li>R<sup>2</sup></li> <li>0.75</li> <li>0.73</li> <li>0.89</li> <li>0.88</li> <li>0.75</li> <li>0.74</li> <li>0.74</li> <li>0.78</li> <li>0.84</li> <li>0.84</li> <li>0.83</li> <li>0.97</li> </ul>                                           | NIB         (μatm)         0.00         -0.13         0.00         0.03         0.00         -0.09         0.00         -0.09         0.00         -0.01         -0.00         -0.00         -0.00         -0.01                                                       | MR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000                                                                                                                                        | N70470473278470470433832817,551                                         | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ ,<br>$SST, SSS, log_{10}(CHL),cos(Julday)SST, SSS, log_{10}(CHL), cos(Julday)SST, SSS, log_{10}(CHL), cos(Julday)SST, SSS, log_{10}(CHL), cos(Julday)SST, SSS, log_{10}(CHL), cos(Julday)$                                                                  | Study AreaEastern GOMEastern GOMNorthern GOMNorthern GOM          |
| Approach Stepwise MLR  PCR  MeSAAf  MNNR  KRFRE     | Statistics<br>Nodel training<br>Model validation<br>Model validation<br>Model validation<br>Model training<br>Model training<br>Model training<br>Model training                                                                                                                                                                               | <ul> <li>KivisE</li> <li>(μatm)</li> <li>14.78</li> <li>15.59</li> <li>10.51</li> <li>11.79</li> <li>14.69</li> <li>14.69</li> <li>15.40</li> <li>12.36</li> <li>10.35</li> <li>10.98</li> <li>6.68</li> <li>9.12</li> </ul> | <ul> <li>R<sup>2</sup></li> <li>0.75</li> <li>0.73</li> <li>0.89</li> <li>0.88</li> <li>0.75</li> <li>0.75</li> <li>0.74</li> <li>0.74</li> <li>0.78</li> <li>0.78</li> <li>0.84</li> <li>0.84</li> <li>0.83</li> <li>0.97</li> <li>0.94</li> </ul> | NIB         (μatm)         0.00         -0.13         0.00         0.00         0.00         0.00         0.00         0.00         0.00         -0.00         -0.00         -0.01         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00 | MR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000                                                                                                                            | N70470473278470470467633832817,55117,551                                | Model InputsSST, SSS, $log_{10}(ag440)$ ,<br>$cos(Julday)$ SST, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(Kd)$ , $log_{10}(CHL)$ ,<br>$log_{10}(ag440)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ ,<br>$cos(Julday)$ SST, SSS, $log_{10}(CHL)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ , $cos(Julday)$ COS(Julday)SST, SSS, $log_{10}(CHL)$ , $cos(Julday)$ SST, SSS, $log_{10}(CHL)$ , $cos(Julday)$ COS(Julday) | Study AreaEastern GOMEastern GOMNorthern GOMNorthern GOMWhole GOM |

seasonal variation patterns due to different controlling systems.

### REFERENCE

[1] Chen, S., Hu, C., Byrne, R. H., Robbins, L. L., & Yang, B. (2016). Remote estimation of surface pCO 2 on the West Florida Shelf. Continental Shelf Research, 128, 10-25. [2] Chen, S., Hu, C., Cai, W. J., & Yang, B. (2017). Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?. Continental Shelf Research, 151, 94-110. [3] Chen, S., & Hu, C. (2017). Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sensing of Environment, 201, 115-132. [4] Lohrenz, S. E., Cai, W. J., Chen, F., Chen, X., & Tuel, M. (2010). Seasonal variability in air-sea fluxes of CO2 in a river-influenced coastal margin. Journal of Geophysical Research: Oceans, 115(C10). [5] Signorini, S. R., Mannino, A., Najjar, R. G., Friedrichs, M. A., Cai, W. J., Salisbury, J., Wang, Z. A, Thomas, H., & Shadwick, E. (2013). Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. Journal of Geophysical Research: Oceans, 118(10), 5439-5460.

### Model performance of the RFRE

#### ACKNOWLEDGEMENT

