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Introduction & Objectives Independent Validation of RFRE in Gulf of Maine

Surface partial pressure of CO2 (pCO,) is a critical parameter in the quantification of air-sea CO2 flux, Cruise in Aug. 2004 Buoy in 2010

which plays an important role in the global carbon budget and understanding of ocean acidification. -
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Conclusion

Statistics of Different Approaches | "~ Feb! T 4 Mar o Comparing to the approaches of MLR, MNR, PCR,
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WSS Al A8 . performance in both GoM and GOM.
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