Biological Oceanography

Cameron Ainsworth

Cameron Ainsworth

Assistant Professor
Physical Oceanography
Fisheries Oceanography
Ph.D. University of British Columbia, 2006
Office Phone: 727.553.3373
Email: ainsworth@usf.edu
CV: View PDF
Fisheries and Ecosystems Ecology Lab Website
Dr. Cameron Ainsworth on Google Scholar

Research: Fisheries Biology; Ecosystem and Resource Management

Dr. Ainsworth's research is focused on understanding how human activities and climate influence the structure and functioning of marine communities and developing new tools and methodologies to support ecosystem-based management. As part of this research, Dr. Ainsworth and his students employ a variety of statistical and numerical simulation models to characterize trophic linkages in marine ecosystems, habitat use by fish and invertebrates, and the influence of physical oceanography on the distribution of marine life. His ongoing studies include a management strategy evaluation (MSE) of Gulf of Mexico marine protected area design. The MSE approach is a type of closed-loop policy analysis that simulates each part of Holling's adaptive management cycle (stock assessment, implementation of harvest rules, and policy evaluation). Key to this approach is recognizing feedbacks from the ecosystem that occur in response to management actions and evaluating tradeoffs with respect to socioeconomic and ecological policy objectives. This work is being done in collaboration with NOAA as part of their Integrated Ecosystem Assessment for the Gulf of Mexico, and other Gulf-area agencies. Another major project ongoing in the Ainsworth lab is the evaluation of the Deepwater Horizon oil spill. This study focuses on the short and long-term impacts of oil toxicity in the ecosystem, as well as the impacts of mediation actions like the use of dispersants and fishery closures.

In 2013, Dr. Ainsworth received a Sloan Research Fellowship, awarded to stimulate fundamental research by early-career scientists and scholars of outstanding promise. These two-year fellowships are awarded yearly to 126 researchers in recognition of distinguished performance and a unique potential to make substantial contributions to their field. Dr. Ainsworth is one of only two Sloan Fellowships awarded in the state of Florida.

Mya Breitbart

Mya Breitbart

Professor
Biological Oceanography
Ph.D. University of California, San Diego/San Diego State University, 2006
Office Phone: 727.553.3520
Email: mya@usf.edu
CV: View PDF
Breitbart Lab Website
Dr. Mya Breitbart on Google Scholar
Mya Breitbart on Twitter

Research: Genomics; Marine Microbiology; Wastewater Microbiology; and Virology

In every milliliter of surface seawater, there are 1 million bacteria and 10 million viruses. Microbes are very diverse, and play important roles in global carbon and nutrient cycling. Dr. Breitbart has spent over a decade studying oceanic viral abundance, diversity, and biogeography. Along the way, she played an integral part in developing the scientific field of viral metagenomics, and her lab continues to expand the application of this technique to new environments and research questions. The Breitbart lab uses molecular techniques to examine the diversity, distribution, and ecological roles of viruses and bacteria in a wide range of environments - including seawater, animals, plants, insects, zooplankton, coral reefs, stromatolites, and reclaimed water.

Notable recent findings include the first discovery of viruses infecting zooplankton (the most numerous animals in the ocean), the first identification of single-stranded DNA viruses in invertebrates, the first multi-year study of viral abundance in the open ocean, the discovery that plant viruses dominate human feces which enabled the development of new indicators of fecal pollution, the identification of viral pathogens potentially involved in marine mammal mortality events, and the creation of new methods for identifying vector-transmitted viruses. Currently funded by an NSF Assembling the Tree of Life grant, the Breitbart lab is now focusing on exploring the diversity and ecology of single-stranded DNA viruses, whose widespread environmental distribution has only recently been recognized.

In September 2013, Dr. Breitbart was selected by Popular Science magazine (October issue), as one of their "Brilliant 10"—an annual feature profiling 10 young scientists who are doing truly groundbreaking work in their fields. To identify those individuals that the scientific community feels are the best, brightest, and most worthy of widespread recognition, Popular Science magazine polls professional organizations and scientists in the field.

Kendra L. Daly

Kendra L. Daly

Professor
Biological Oceanography
Ph.D., University of Tennessee, 1995
Office Phone: 727.553.1041
Lab Phone: 727.553.1207
Email: kdaly@mail.usf.edu
CV: View PDF
Zooplankton Ecology Lab Website
Dr. Kendra L. Daly on Google Scholar
Southern Ocean Science Website

Research: Zooplankton Ecology; Gulf of Mexico and Antarctic Ecosystems; Low Oxygen Regions in the Ocean; Ocean Observatories; Sensor Technology

Dr. Daly's research interests focus on zooplankton ecology with the aim of understanding the physical and biological factors that control the abundance and distribution of zooplankton and the role of zooplankton in marine food webs, biogeochemical cycles, and fisheries oceanography. Currently funded projects include investigations of (1) the Gulf of Mexico lower trophic food web response to the Deepwater Horizon oil spill, (2) the role of marine snow in the sedimentation of Deepwater Horizon oil to the sea floor, and (3) ecosystem dynamics and predator-prey interactions in McMurdo Sound, Antarctica, using the SCINI remotely operated vehicle with a variety of sensors.

Dr. Daly is a 2015 Fellow of the American Association for the Advancement of Science. She also is the Chair of the International Science Advisory Board for Ocean Networks Canada and serves on the NSF Regional Class Research Vessel Science Oversight Committee and the U.S. Ocean Carbon and Biogeochemistry Scientific Steering Committee.

Frank E. Muller-Karger

Frank E. Muller-Karger

Professor
Biological Oceanography and Remote Sensing
Ph.D., University of Maryland, 1988
Office Phone: 727.553.3335
Lab Phone: 727.553.1186
Email: carib@usf.edu
CV: View PDF
Institute for Marine Remote Sensing Lab Website

 

Research: Changes in Marine Ecosystems Using Field-based and Satellite Remote Sensing Time Series

Frank E. Muller-Karger is a biological oceanographer (Professor) at the College of Marine Science, University of South Florida. He is of Hispanic descent via Puerto Rico, and while born in the U.S. he grew up in Venezuela. Muller-Karger conducts research on how marine ecosystems change in time. He uses time series of observations collected by traditional oceanographic methods and by satellite sensors to study changes in water quality, primary production, and biodiversity in coastal and marine environments. This research helps in understanding how large-scale phenomena, like climate change or other disturbances, affect ecosystems including people. The focus of his present work is to assess the importance of continental margins, including areas of upwelling, river discharge, and coral reefs in the global carbon budget. Muller-Karger combines the observations from different satellites to measure ocean color, sea surface temperature, winds, salinity and sea surface elevation and how these change. He uses field-based time series to measure the vertical structure of plankton and how particles settle in the ocean. Much of this work focuses on improving methods to measure the diversity of phytoplankton using remote sensing.

Muller-Karger has worked hand-in-hand with K-12 teachers and students and the public to showcase these new technologies and to highlight the importance of the ocean in our daily lives. He has a keen interest in linking science and education, and in addressing the problem of under-representation of minorities in scientific research programs. Muller-Karger was appointed by President George W. Bush to serve on the U.S. Commission on Ocean Policy in 2001. In 2005, he was appointed to the Ocean Studies Board of the National Research Council/National Academies. He previously received the NASA Jet Propulsion Laboratory Award for Outstanding Contributions and the NASA Administrator Award for Exceptional Contribution and Service for supporting development of satellite technologies for ocean observation. From August 2007-August 2009 he served as Dean of the School for Marine Science and Technology (SMAST) at the University of Massachusetts Dartmouth. He has B.S., M.S. and Ph.D. degrees in marine science and a Masters degree in management, and has authored or co-authored over 120 scientific publications. He speaks fluent Spanish and German.

Steve Murawski

Steve Murawski

Population Dynamics/Marine Ecosystem Analysis
Professor and St. Petersburg Downtown Partnership
Peter R. Betzer Endowed Chair
Ph.D., University of Massachusetts-Amherst, 1984
Office Phone: 727.553.3367
Email: smurawski@usf.edu
CV: View CV
C-IMAGE Website
The Population and Marine Ecosystems Dynamics Lab Website
C-BASS Project Website

Research: Population dynamics of exploited marine species; impacts of fishing and other anthropogenic stresses on marine ecosystems; ecosystem modeling and analysis

Dr. Murawski is a fisheries biologist and marine ecologist involved in understanding the impacts of human activities on the sustainability of ocean ecosystems. He has developed approaches for understanding the impacts of fishing on marine fish complexes exploited in mixed-species aggregations. Additionally, his work on impacts of marine protected areas and other management options has formed the scientific basis for regulation. Such assessments can help inform investments to rebuild the Gulf of Mexico from effects of the oil spill, loss of juvenile nursery areas, nutrient enrichment, overfishing and other factors.

Dr. Murawski currently serves as Director of the Center for Integrated Analysis and Modeling of Gulf Ecosystems (C-IMAGE), which is funded by a grant from the Gulf of Mexico Research Initiative. Additionally, he is applying advanced technology solutions to the next generation of marine ecosystem surveys through a joint program with the Center for Ocean Technology to develop towed video systems for fish and habitat assessments. In addition to his science activities, Dr. Murawski is a USA Delegate and formerly a vice-president of the International Council for the Exploration of the SEA (ICES), a 20-nation organization dedicated to increasing understanding of ocean ecosystems in the convention area, which includes the United States, Canada and 18 European countries. He is also a member of the National Academy of Sciences' Ocean Studies Board, and USA Committee for the International Institute for Advanced Systems Analysis. In 2013, Dr. Murawski was also appointed a committee member for the Decadal Survey of Ocean Sciences 2015. This survey, managed by the National Academies, will set the science priorities for the next decade in the context of the current state of Knowledge, ongoing research activities, and resource availability.

John H. Paul

John H. Paul

Distinguished University Professor
Biological Oceanography
Ph.D., University of Miami, 1980
Office Phone: 727.553.1168
Email: jpaul@usf.edu
CV: View PDF
Marine Microbiology Group Lab Website

 

 

Research: Development of Biological Sensors to Detect Harmful Microbes in the Coastal Ocean; Development of "Grouper Forensics" to Detect Authenticity of Seafood in Restaurants and Seafood Suppliers; Importance of Silent Viral Infections on Life in the Seas; Mechanisms of Gene Transfer in the Oceans that Involve Viruses; and Technology for Biological Detection of Organisms Involved in CO2 Fixation and Amelioration of Anthropogenic CO2 levels

The common research theme in Dr. Paul's is the measurement of gene expression as a means to understanding microbially-mediated processes in the oceans. This is divided into specific areas of research that include lysogeny, phytoplankton carbon fixation, and development of sensors. Lysogeny is the process whereby a virus establishes a stable symbiosis in its host. His group is examining the genomes of temperate marine bacteriophages to understand the control of lysogeny in heterotrophic bacteria and picocyanobacteria in the marine environment. His studies in carbon fixation have focused on the control of this process in oceanic river plumes. Such plumes have tremendous CO2 drawdown, yet also behave as areas of high levels of recycled production.

Dr. Paul's group is using their experience in measuring mRNA as a surrogate for microbial gene expression in the design of hand-held and autonomous sensors (in conjunction with the Center for Ocean Technology) for the detection of noxious microorganisms in coastal environments.

Ernst B. Peebles

Ernst B. Peebles

Associate Professor
Biological Oceanography
Office Phone: 727.553.3983
Lab Phone: 727.553.1296
Email: epeebles@mail.usf.edu
CV: View PDF
Selected Publications: View PDF

 

 

Research Interests

Most students in my lab are engaged in the Marine Resource Assessment program and are collectively pursuing a diversity of methods that apply to living resource biology and management. The common thread is coastal fish and shellfish habitat use and quality. One research focus has been spatio-temporal interactions between coastal fishes and their prey, particularly as these are affected by freshwater flows to the coast and other physical processes. Personnel from my lab have quantified estuarine ichthyoplankton and invertebrate zooplankton responses to freshwater flows from more than 18 watersheds along Florida's west coast; these results have been used to manage environmental flows. The same type of plankton data is being used to develop community-level metrics for establishing the extent of eutrophication in coastal water bodies. In another line of research, we use stable isotope analysis to investigate factors that influence coastal biomass pathways. We also use stable isotopes to contrast fish isotopic signatures with geographic background maps (isoscapes), which allows us to identify site fidelities and movements that determine geographic habitat connectivity. Recently, we added DNA barcoding and hydrodynamic models to our effort to characterize habitat connectivity during egg and larval stages. In a related effort, we have been using otolith microchemistry (LA-ICP-MS) to connect adult fish to the geographic regions they used as nursery habitat and to detect exposure of individual fish to stressful events such as oil spills.

Chris Stallings

Chris Stallings

Assistant Professor
Biological Oceanography
Ph.D. Oregon State University, 2007
Office Phone: 727.553.3371
Email: stallings@usf.edu
CV: View PDF
Fish Ecology Laboratory Website
Fish Ecology Laboratory on Facebook

 

Research: Ecology; Marine conservation and management efforts

Research in Dr. Stallings' lab focuses on basic concepts in ecology, yet includes a strong applied component to inform marine conservation and management efforts. Overarching efforts seek to estimate the abundance of marine organisms and examine the ecological processes that drive population and community dynamics. His lab's questions are often framed to evaluate the effects of human activities, such as fishing and coastal development, on ecological systems. Therefore, much of the research is field-intensive and involves both experimental and large-scale observational approaches. However, the lab also incorporates an extensive laboratory component through mesocosm experiments and use of stable isotope analysis. Moreover, the Stallings Lab explores large datasets, using multivariate statistics and GIS to reveal broad-scale ecological patterns that may be further explored through focused regional field studies.

John J. Walsh

John J. Walsh

Distinguished University Professor
Biological Oceanography
Ph.D., University of Miami, 1969
Office Phone: 727.553.1164
Email: jwalsh@usf.edu
CV: View PDF
Center for Prediction of Red Tides Website

 

 

Research: Coastal Upwelling; Red Tides of Dinoflagellates; and Systems Analyses of Continental Shelves

As a biological oceanographer, J. J. Walsh has focused on systems analyses of continental shelves over the last 40 years, publishing more than 100 books, papers, and reports. In addition to prior studies of coastal upwelling off Peru, Northwest Africa, Baja California, and Venezuela, the ecological components of global carbon and nitrogen budgets have been stressed. Satellite images have also been used to constrain coupled numerical models of biophysical processes effecting species succession of plankton within the food webs of the Southern Ocean, the Bering/Chukchi/ Beaufort Seas, the Mid-Atlantic/South Atlantic Bights, the Sargasso/Caribbean Seas, and the Gulf of Mexico. Continuing research involves simulation analyses of the future food web consequences of past loss of ice cover within Arctic Seas. During recent years, this basic research has also led to applied simulation analyses of the origin, transport, and fate of Florida toxic red tides of dinoflagellates for future development of operational ecological models of phytoplankton competition, effected by biochemical cycling of multiple elements and nested within physical circulation models, in shelf waters of the southeastern United States as part of the newly formed Center for Prediction of Red tides (CPR) at USF.

Brad Seibel

Brad Seibel

Professor
Biological Oceanography
Office Phone: 727.553.3403
Email: seibel@usf.edu
CV: View PDF

 

 

Research: Physiological response of marine animals to extreme environments, ocean acidification, deoxygenation and warming, polar and deep-sea biology, biology of mollusks

 

My research employs a unique suite of field and laboratory techniques and approaches to assess the ecological consequences of climate change, including ocean acidification, deoxygenation and warming, and the role of animal energetics in ecosystem dynamics. I carry out broad comparative physiology studies to determine the limits to evolution and ecology. Physiological mechanism provides a foundation upon which ecosystem responses to climate change and consequences for biogeochemical cycles can be understood. My studies compare organisms across size, depth, latitudinal and phylogenetic lines, from microzooplankton to macronekton, ctenophores to fishes, from the poles to the equator and from the abyssal plains to the ocean surface.  We strive to integrate across levels of organization, from mitochondria to ecosystems.  I focus on the physiology of individual species and what this can teach us about their origin, behavior, ecology, diversity and the ecosystems in which they live.