Gervais’ Beaked Whale (*Mesoplodon europaeus*)

Auditory Evoked Potential (AEP) Hearing Measurements

David Mann1, René A. Varela2, Juli D. Goldstein2, Stephen D. McCulloch2, Gregory D. Bossart2, James J. Finneran3, Dorian Houser4, & Mandy L.H. Cook1

1College of Marine Science, University of South Florida, 149 Seventh Avenue South, St. Petersburg, FL 33701-5016, USA; 2Harbor Branch Oceanographic Institution, Inc., 5600 U.S. 1 North, Fort Pierce, FL 34946, USA; 3U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center, San Diego, Code 2351, 5350 Hull St., San Diego, CA 92152-5001, USA; 4Bionimetrics, 7951 Shantung Dr., San Diego, CA 92071-3432, USA

Abstract

Several mass strandings of beaked whales have recently been correlated with military exercises involving mid-frequency sonar, highlighting unknowns regarding hearing sensitivity in these species. We report the hearing abilities of a stranded juvenile beaked whale (*Mesoplodon europaeus*) measured with auditory evoked potentials (AEPs). The beaked whale’s modulation rate transfer function (MRTF) measured with a 40 kHz carrier showed responses up to an 1800 Hz amplitude modulation (AM) rate. The MRTF was strongest at the 1000 Hz and 1200 Hz AM rates. The envelope following response (EFR) input-output functions were non-linear. The beaked whale was most sensitive to high frequency signals between 40-80 kHz, but produced smaller evoked potentials to 5 kHz, the lowest frequency tested. The testing method using a jawphone in water was ground-truthed with AEP measurements of three bottlenose dolphins, for which behavioral audiograms had been previously measured. The beaked whale hearing range and sensitivity are similar to other odontocetes that have been measured.

A single, 181 kg juvenile male beaked whale (*Mesoplodon europaeus*; HBOI-Mo-01402) live-stranded ocean-side near the south edge of St. Lucie Inlet, FL on July 20, 2004. The whale was transported to Harbor Branch Oceanographic Institution, where it was maintained in an above-ground pool (approximate 1.5 m depth).

A special thanks to Dr. Kim Risso, Tony Scipadis, Brandon Southall, Wade Bercher, St. Janet Washington, Beth McCulloch, Laura Vespri, David Eves, and Richard H. Layington for assistance with capturing. We thank Dutch Remmer for assistance with beaked whale anatomy, and Peter Tyson for sharing data on beaked whale echolocation frequencies. We thank Patrick Ross for identification of the species from a skin sample. We thank Elizabeth Howes, Brandon Pagan, Kenneth Bond, and the entire volunteers staff of HBHI for the care of this animal. Funding for the rescue and rehabilitation care of this whale was possible with the Protect Florida Whales License Plate Fund. We thank Randy Diers-Littell-Green, and Carolyn Schon, for beaked whale training and other valuable assistance at the U.S. Navy Marine Mammal Program. This project was funded in part by a grant awarded from Harbor Branch Oceanographic Institution, Inc. from proceeds collected from the sale of Harbor Wild Dolphin License Plate as authorized by Florida Statute 383.095(6)(20). The experiments comply with the Principles of animal care, published in the US National Institutes of Health, and also with the current laws of the US.

NMMF Permit No. 932-148H-56.

AEP Measurements

- **Electrodes**:
 - **Jawphone**:

Sound Presentation:

- Sounds were presented with a jawphone into the animal’s mouth at the surface.

Evoked Potentials: Evoked potentials were recorded from surface suction cup silver chloride electrodes.

Modulation Rate Transfer Function (MRTF)

- Beaked whale modulation rate transfer function measured with a 40 kHz carrier tone at 130 dB re 1 uPa at various amplitude modulation rates.
 - The MRTF took approximately 2 minutes to measure.
 - Largest EFRs from 600-1200 Hz AM rates

AEP Input-Output Functions

Beaked whale input-output functions of evoked potential level as a function of stimulus sound pressure level (SPL). Carrier tones were amplitude modulated at 1200 Hz. The responses are non-linear.

Beaked Whale AEP Audiogram

- The AEP audiogram is presented as the lowest sound pressure levels (SPLs) for which an evoked potential could be detected at each test frequency, because of the non-linear nature of the input-output functions.

Ground-Truthing Against Known Behavioral Thresholds

To test how closely the setup using a jawphone and AEP measurements match behavioral hearing estimates, the same setup and technique were used to measure hearing in three bottlenose dolphins (*Tursiops truncatus*) for which behavioral audiograms had been previously collected at SPAWR.

- **AEP audiogram measured from Blue (BLU) in pool.**

Conclusions

- The beaked whale AEP audiogram is similar to other odontocetes, with sensitive high-frequency hearing, and decreasing sensitivity to low frequencies.
- AEPs are useful for making rapid hearing assessments of stranded marine mammals.