Developments in Numerical Modeling of Oil Spills Before & After Deepwater Horizon Spill

> MOSSFA Synthesis Workshop I Texas A&M University at Galveston 28th November, 2018

Anusha L. Dissanayake RPS-Ocean Science, South Kingstown, RI

Oil Spill Models

- **CDOG** Comprehensive Deepwater Oil and Gas Blowout Model at Clarkson University, Potsdam NY by Yapa et al.
- SIMAP/OILMAP Integrated Oil Spill Impact Model System/Oil Spill Model and Response System - Models at RPS Ocean Science (ASA) in Rhode Island by French McCay et al. and Spaulding et al.
- **OSCAR** Oil Spill Contingency And Response Model at SINTEF Norway by Reed et al. and Johansen et al.
- GNOME General NOAA Operational Modeling Environment Model at NOAA by Bill Lehr, Chris Barker and CJ Beegle Krause
- **TAMOC** Texas A&M Oil Spill (Outfalls) Calculator by Socolofsky et al.
- **CMS** Connectivity Modeling System by Paris et al.
- LTRANS Lagrangian TRANSport model by North et al.
- BLOSOM The National Energy Technology Laboratory (NETL) Blowout and Spill Occurrence Model
- **MOHID** Water Modeling System Portugal

Model Description

- > Near-Field model
- ➤ Far-Field model

Oil on

- Bubble and droplet break-up model
- Physical, chemical and biological processes of bubbles and droplets
- Interaction with land (coast, sea) bottom)

Integral Plume Models

≻Implemented in Texas A&M Oil Spill (Outfalls) Calculator.

>Use to simulate single and multiphase plume.

>Use an entrainment hypothesis and top hat velocity profiles.

Stratified Plume Model

Eularian integral model, based on double plume model approach for stratification dominant environments **Bent Plume Model**

Lagrangian integral model simulates plumes in cross flow dominant environments

Socolofsky et al. (2008) JHE, Dissanayake et al. (2018) EFM

Plume Dynamic Stage (PDS) – Cross Flow Dominated Plume

Lee & Cheung (1990) JEE, Yapa & Zheng (1997) JHR

Effects of Dispersants-Laboratory Experiments

Murphy et al. (2016)

Simulation of Subsea Dispersants

Gros et al. (2017) PNAS, Picture Credits: WHOI

Models to Predict Size Distributions of Oil & Gas from Underwater Blowouts & Natural Dispersion

D Two main approaches

Equilibrium Correlation Models

E.g. Johansen et al. (2013, 2015), Li et al. (2017 a, b)

- Predict equilibrium droplet size distribution
- Based on non-dimensional correlations
- Consider release and ambient fluid properties and flow state

Population Dynamic Models

E.g. Bandara and Yapa (2011), Nissanka and Yapa (2016, 2017) – Oildroplets, Zhao et al. (2014), (2017a), (2017b) – VDROP, VDROPJ

- Predict evolution of size distributions along the plume
- Based on Break-up and Coalescence
- Consider release and ambient fluid properties and flow state

Experimental Data for Calibration/Validation of Oil & Gas Break-up Models

- Data Available in different scales Small, Medium, Large (Field scale)
 - DeepSpill field experiments oil and gas release at 844 m depth Johansen (2002)
 - Laboratory Experiment Data 6 phases of small and medium scale experiments at SINTEF tower basin, Southwest Research Laboratory and OHMSETT facility, TUHH- Humburg (Brandvik et al., 2013; 2014, 2015, 2016, 2017a, 2017b, Malone et al., 2018, Wang et al., (2018)

Mass & Heat Transfer of Bubbles & Droplets

Heat Transfer

$$\frac{d(\dot{m}_p C_p T_p)}{dt} = -\frac{\pi \dot{n}_b d_e^2}{u + u_s} \beta_p (T_p - T_a)$$

$$- \text{Heat transfer coefficient}$$

McGinnis et al. (2006) JGR-Oceans

Terminal Velocity of Droplets & Bubbles

$$U_{T} = (\operatorname{Re} \mu / \rho d)$$

$$U_{T} = (\operatorname{Re} \mu / \rho d)$$

$$U_{T} = \mu M^{-0.149} (J - 0.857) / \rho d_{e}$$

$$U_{T} = 0.711 \sqrt{g d_{e} \Delta \rho / \rho}$$
Spherical-cap
(large size)

ho - density of ambient fluid μ - viscosity of ambient fluid de - equivalent diameter d - bubble diameter Re - Reynolds number ρ - density of ambient fluid σ - interfacial tension M - Morton Number J - f(μ , d, ρ, σ)

Release Fluid Equilibrium

Liquid and Gas phase equilibrium and density calculation uses Peng-Robinson Equation of state

Far-Field: Advection & Diffusion Stage

For dissolved oil and gas

$$\frac{\partial}{\partial t}(C_{vd}) + \frac{\partial}{\partial x}(uC_{vd}) + \frac{\partial}{\partial y}(vC_{vd}) + \frac{\partial}{\partial z}(wC_{vd}) = \frac{\partial}{\partial x}\left(D_x\frac{\partial C_{vd}}{\partial x}\right) + \frac{\partial}{\partial y}\left(D_y\frac{\partial C_{vd}}{\partial y}\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial C_{vd}}{\partial z}\right) + S_D$$

Lagrangian Parcel (LP) Method

- A Lagrangian Parcel A representation of an ensemble of identical multiple particles.
- > Each LP has a mass and a set of time-dependent spatial coordinates.
- > LPs can be droplets, bubbles, dissolved oil, gas, or solid particles.
- > Chemical and physical processes are considered.
- LPs are introduced into water at a rate corresponding to flow rate from the source.
- > Use forcing from hydrodynamic models/measured data to model advection.

Physical, Chemical & Biological Processes Associated with Droplets & Bubbles in the Far-filed

- Dissolution
- Biodegradation
- Natural dispersion
- Evaporation
- Photo-oxidation
- ➤ Water-in-oil emulsion and tar ball formation
- Interaction with land/ice
- Interaction with sediments/mineral particles in shoreline/coastal environments
- Marine oil snow (MOS) formation new addition?

MOS Aggregate Formation: Coagulation Theory

 $\frac{dn(m,t)}{dt} = \frac{\alpha}{2} \int_0^m \beta(m_j, m - m_j) n(m - m_j, t) n(m_j, t) dm_j$ $- \alpha n(m,t) \int_0^\infty \beta(m, m_j) n(m_j, t) dm_j - n(m,t) \frac{w_s(m)}{Z} + I(m,t)$

n(m,t) - Particle size spectrum

 m, m_j - Particle masses

 $w_s(m)$ - Settling velocity of particles of mass m

 α - Sticking (Probability of sticking after a collision)

 $\beta(m, m_j)$ - Coagulation kernel (Determines rate of collision of $m \& m_j$)

I(m,t) - Rate of formation of particles of mass m

Photo Credits: David Liittschwager

Collision Mechanisms

Brownian Motion

Fluid Shear

Differential Settling

Numerical Model of Marine Oil Snow (MOS)

Aggregation Model

- Based on a Stochastic, Lagrangian Aggregate Model of Sinking particles (SLAMS-Jokulsdottir & Archer, 2016).
- Model uses super-droplet method to simulate large number of real particles with one representative particle to increase the calculation efficiency (Zsom & Dullemond, 2008).
- We introduced oil and river sediments to the SLAMS model to simulate MOS formation.

Field Data Collected

Dissanayake et al. (2018) JGR-Oceans

Simulation Results: Aggregate Size Spectrum

Settling Fluxes at the seafloor

Model Estimation

Estimations from field observations

Station	Seafloor oil Concentration (g m ⁻²)	Au
GG01	4.03	
GG02	14.82	Stout &
GG03	134.7	[2
GG04	3.38	Rom
GG05	5.46	[2

Authors	Seafloor Study Area (km²)	Seafloor Oil Concentration (g m ⁻²)
Stout & German [2017]	1030	20
Romero et al. [2017]	32648	0.039–0.098
	219	2.39–8.74

Model Sensitivity

Stickiness Estimation Method
<u>Method 1</u>

$$S_{agg} = (S_{OrgC} V_{OrgC} + S_{TEP} V_{TEP} + S_{Oil} V_{Oil} + S_{Sed} V_{Sed}) / V_{agg}$$

Method 2

$$S_{agg} = (0.1 V_{OrgC} + V_{TEP})/V_{agg}$$

 $\frac{\text{Method 3}}{S_{\text{agg}}} = (V_{\text{OrgC}} + V_{\text{TEP}} + V_{\text{Oil}} + V_{\text{Sed}})/V_{\text{agg}}$

Conclusions

- There has been new developments/improvements in oil spill models after DWH in nearfield, far-field, bubble and droplet break-up models.
- The formation of MOS can be added as an extension to the oil and suspended particle aggregation or oil mineral aggregation in the coastal environments.
- > Determining how to define input variables for these models are important.
- > Experimental and modeling groups should communicate with each other.
- Future modifications for marine oil snow formation models
 - ✤ Model the time evolution of oil and MOS in the water column.
 - Coupling the model with a hydrodynamic model that will allow us to simulate oil and MOS advected within a system.
 - Additional research on the factors controlling aggregate fractal structure, stickiness, and disaggregation rates to improve the model predictions and comparison with data.
 - Biodegradation of oil in MOS aggregates.
 - ✤Define oil in detail. e.g. pseudo components

Acknowledgement

Marine Oil Snow modeling work was made possible by a grant from The Gulf of Mexico Research Initiative to support the Project: Oil-Marine Snow-Mineral Aggregate Interactions and Sedimentation during the 2010 Deepwater Horizon Oil Spill.

Thank you!