

Deep Sea in a Can: Microbial Degradation Under High Pressure

Andreas Liese, Rudi Müller, Paul Bubenheim Steffen Hackbusch, Nuttapol Noirungsee, Juan Viamonte

05.02.2018, Advancing Oil Spill Technology: Beyond the Horizon, New Orleans, USA

🕖 - IMAGE - III

Center for the Integrated Modeling and Analysis of Gulf Ecosystems

(3) Massive-scale Barcoding of Ichthyoplankton

(2) Advanced "omics" approaches to oil spill impacts on biota

Biodegradation

Michael Schlüter

Hamburg University of Technology

Multiphase Flows

(1) High-Pressure Low Temperature Studies of sub-surf^{Thomas Oldenburg} outs

> Partitioning Dieter Krause

Hamburg University of Technology

Institute of Product Developmen and Mechanical Engineering Device

Pressure Lab

Zach Aman

Hydrate Formation & Scale Down

Deep Sea in a Can

experimental biodegradation simulation under controlled lab conditions to validate models with original oils and sediments

High Pressure Reactor Setup

 pressure reactors for bacterial growth and O₂-analysis up to 40 MPa

 methane reactor for bacterial growth and analysis up to 15 MPa

 spindle press system for mechanical pressurization up to 100 MPa

High Pressure Reactor Setup

High Pressure Single Strain Experiments after 120 h

20 ml MM2 medium, 1% crude oil (LLS, 200 μ l), 200 rpm, 20°C. Dispersant (Corexit EC9500A) addition: 2 μ l. N = 3.

BIOCA

RESEARCH INITIATIVE

Online NIR Spectroscopic Analysis at High Pressure

CH₄ and O₂ can be simultaneously measured @ high pressure up to 15 MPa

Methane Biodegradation

(0.1 MPa methane)

Oxygen consumption rates of Methylocaldum P9 under pressure

N. Noirungsee

BIOC

High Pressure Reactor Setup (40 MPa)

Mechanical pressurization with N₂ up to 40 MPa (1 MPa max CH₄ pressure)

Spindle Press System

High Pressure reactor volume 160 ml; pressure max 40 MPa N_2 (max 10 bar CH₄).

Crude Oil Biodegradation (sediment)

26

Biodegradation extent effected by pressure & Corexit EC9500A

Saturates

20

06

Influence of Corexit EC9500A (1:25 DOR), LLS crude oil (1% v/v), 1 g of top layer sediment mix (DWH01, DSH08, DSH10, SW01, PCB06), 0.1, 10 and 40 MPa; 4°C; 14 and 28 days. GC-MS

Research Uncertainties / Technical Challenges

Are the research results relevant ?

Areas Ripe for Technological Advancements

• Efficiency of biodegradation

... depends on microbial activity / community

• Industry is pushing to deeper dwells

... pressure effect becomes more important

- Sampling
 - @ deep sea @ high pressure

... without decompression

@ small volumes from high pressure reactors

of sediment and water column prior to drilling to generate better models

Biodegradation studies @ deep sea

improved in situ sensors for tracking chemicals & concentrations