

Advances in deep-sea blowout modeling and key technical challenges for improving predictions and mitigation

Claire B. Paris,

Rosenstiel School of Marine and Atmospheric Sciences, University of Miami

MODELING PREDICTIONS, February 5, 2018

Full 3-dimension spatial computation of [HnCn]

[Perlin and Paris, t.b.s.]

Two models approach: Near-Field & Far-Field

Coupled Near-Field Far-Field operational approach

Advanced compute systems

with integrated input/output data storage become critical for mass flux and hydrocarbons concentration computations for each droplet "type" (chemophysical properties, treated or untreated) at each time step

Coupled Near-Far Fields Algorithms

Appropriate discretization of HC components to accurately capture gas solubility of "live oil" and it phase behavior Accurate phase density **developing different EOS for the thermophysical live-oil behavior over a T/P range,** tested against phase behavior measurements in the lab Laboratory **validation for the scaling of water-oil IFT models**

Adapt probabilistic model post-processing and optimize algorithm

- Hot spots of oil mass for **first response** efforts
- Low concentrations of PAHs for **toxicity studies**
- •Faster computing capacities and high speed data storage

Variation in ε Across Crude Oil Experiments

ε_{max} (m²/s³)

TDR may better unify experimental length scales (cm to km)

- Data collected with different oils, unsaturated
- Up to 50% variation in thermophysical properties

[Aman et al., In Prep.] 9

Areas for Technological Advancements

Better Model Parameterization from Lab Experiments

- •Droplet Size Distribution (DSD):
 - *in situ* observations of changes as they rise for treated and untreated oil,
 - •Energy dissipation rates, degassing
- T/P biodegradation of untreated and treated oil
- oil partition behavior and influence of dispersants
- Influence of **hydrate formation** and local turbulent kinetic energy by high pressure sapphire autoclave

In situ Sampling Technology

- Measure deep current, vertical velocity and turbulent diffusion
- Discriminate dissolved surfactant from oil-bonded surfactant
- Water column sampling at the leading edge fo the modeled oil plume and observed surface slicks and rapid analysis (within 24 hours)

Validation: In situ sampling - BP Gulf Science Data

[Berenshtein et al., In Prep.]

[Trillo et al., in review.]

Modeling "treated" oil transport and fate during Subsea dispersant injection (SSDI)

[National Geographic, Oct 2010]

Nature Reviews | Microbiology

[Joye et al. 2015 Nature Reviews]