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Next generation sequencing pipeline for the high throughput analysis of
microbial communities in the Gulf
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Case Study: Gulf-wide Distribution of Benthic Microbial Communities
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Largest dataset available from seafloor: > 120
million gene sequences from > 700 samples, 29
sites, over 4 years

Random forest model indicates that microbial
community structure is linked to oxygen
penetration depth and sediment geochemical
regime, which are likely controlled through carbon
delivery.

Communities impacted by DWH spill had returned
to baseline, or close to baseline, conditions after
two years.

It is now possible to predict community
compositions across the Gulf of Mexico and to
assess future impacted sediments that may be
poorly characterized



Case Study: Oiling of Pensacola Beach
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Biomarkers and Bioindicators
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e Validate biomarkers by combining omics with
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guantification of biodegradation potential

e Metagenomic time series reveals pathways and controls

of hydrocarbon degradation

e Macondimonas enriched from undectectable levels to ~

30 % of community in oiled sands

e Ubiquitous in oiled sediments around the world
 Nearly complete genome reveals putative function

e Genome enabled targeted isolation



Needs for Technology Development
Mobile Ecogenomic
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Armbrust, 2014; Pargett et
al., 2015; McPartlin et al.,
2017; McQuillan et al., 2017

e Automated, in situ sampling/ detection/ analysis of microbial
communities or microbial metabolites along with relevant
environmental parameters

* Primary challenges: cost of sample acquisition, sample integrity,
complexity

* Ecogenomics = genetic along with environmental characterization  3rd gep,
e ESP, autonomous molecular biology lab 40 liters

e Platform for analysis of microbial abundance and community
composition (water sampling/ preservation, PCR, qPCR, hybridization)




Future Work

e Many effective in situ samplers available with
varying strengths/ weaknesses

e Few provide a platform for in situ sample
processing beyond preservation

e ESP tested for 6 mo deployment on a mooring and
rated to 4000 m water depth

e Bottom line: in situ sampling is working, in situ
analysis and detection ~ 5 years from deployment

e Challenges/ limitations
— Cost

— Continued advancements in miniaturization and power
efficiency

— Development of microfluidics and lab on chip technologies
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— Develop RNA and protein detection methods
— New PCR and gPCR methods

— Validation and calibration of in situ sensors for monitoring,
risk assessment, and determination of ecosystem impacts
Armbrust, 2014; Pargett et al., 2015; McPartlin et al., 2017, (genotype-phenotype relationships key)

McQuillan et al., 2017
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