Dispersants and Related Oil Spill Technologies – at the Nanoscale!

Vijay T. John Department of Chemical and Biomolecular Engineering Tulane University

Funding: Gulf of Mexico Research Initiative

vj@tulane.edu

Spill Conditions Limit Response Options

10⁻²

10⁻¹ Millimeters 1 Average Oil Thickness Courtesy ExxonMobil

The use of dispersants is an important oil spill response strategy.

A Simple Dispersant Formulation with Food Grade Surfactants.

Motivation: Current dispersants used to remediate oil spills, (e.g., Corexits), contain synthetic, non-food-grade surfactants.

Overall Goal: To develop new dispersants for oil spills using nontoxic, <u>food-grade</u> amphiphiles. The dispersant should be comparable (or better) in its effectiveness compared to the Corexits.

Zwitterionic, 2-tailed phospholipid: Used as emulsifier in mayonnaise, chocolate etc. Nonionic, 1-tailed surfactant: Used as emulsifier in many foods, especially ice cream.

Lecithin+Tween 80: Emulsifying Crude Oil

Athas, J. C., Jun, K., McCafferty, C., Owoseni, O., John, V. T., & Raghavan, S. R. (2014). An Effective Dispersant for Oil Spills Based on Food-Grade Amphiphiles. *Langmuir*, **30** (31), 9285-9294.

Dispersion by ocean waves and Biodegradation

- Dispersants: surfactant blends dissolved in a hydrocarbon solvent applied to reduce oil-water interfacial tension.
- Liquid dispersants suffer from spray drift, gets washed off by ocean currents when applied onto heavy or weathered oils and pose health risk to responders
- Gel based dispersants potential advantages include (a) adherence to weathered oil (b) increased contact time with oil due to buoyancy (c) minimal solvent use (d) high surfactant concentrations

Lessard, R.; Demarco, G. The significance of oil spill dispersants. Spill Sci Technol B 2000, 6 (1), 59-68. Nedwed T. New dispersant delivered as a gel IOSC 2008; 121

oil

Gel Buoyancy and Oil Dispersion Characteristics

The DOSS/PC/Tween 80 gel anchors to the surface oil layer and disperses the oil into droplets suspended in the water column

Seeing phenomena at the micro and nanoscale using optical and electron microscopy

Transmission Electron Microscope

Scanning Electron Microscope

Cryo-Electron Microscopy to visually observe attachment of bacteria on oil droplet and exopolymer formed when the emulsion is formed by *A.borkumensis* bacterial culture

A.borkumensis populating a hexadecane droplet

A.borkumensis interconnected by exopolymer on the surface of Anadarko crude oil

Chemical Herding and In-Situ Burning

www.ohmsett.com BSEE- Bureau of Safety and Environmental Enforcement

Using surfactants to thicken surface oil slicks "chemical herding"

http://www.crrel.usace.army.mil/innovations/ oil spill research/mitigation.html

Thank you!