

Biodegradation of Emulsified MC252 Oil in Coastal Salt Marshes John H Pardue, Vijai Elango, Brooke R. McCoy, Holly E. Samaha and John W. Bellone Civil & Environmental Engineering, LSU

October 2011

Outline

- Emulsified MC252 oil
- What we knew about biodegradation in salt marshes
- Initial salt marsh core studies using emulsified MC252

Emulsion or "mousse"- primary form of oil at coast

Stability of oil:water emulsions

Partially Resin-Solvated Asphaltene Aggregate

Stable emulsions form due to surface-active components: asphaltenes and resins

Asphaltene-Stabilized Water Droplet

Droplets Resist Fusion Due to Steric Stabilization

From McLean and Kilpatrick, 1997

Outline

- Emulsified MC252 oil
- What we knew about biodegradation in salt marshes
- Initial salt marsh core studies using emulsified MC252

FIGURE 1. (A) Total (C15–C44) alkane hopane ratio versus time in aerated microcosms. (B) Total PAH (phenanthrene, C1–C2; naph-thalene, C1–C2) hopane ratio versus time.

Aerobic biodegradation

1. Both aerobic and anaerobic microbial processes involved in crude oil biodegradation in salt marshes

Anaerobic biodegradation

2. Mixed results for fertilization impacts on acceleration of crude oil components in marshes

OONF OOAN OOTU $\begin{array}{l} \text{Sum of Alkanes} \\ 0.0054 \pm 0.0027 \\ 0.0059 \pm 0.0025 \\ 0.0058 \pm 0.0009 \end{array}$

3. Oil limits oxygen flux by creating a physical barrier but also increases O_2 demand from 3-5x through increased aerobic and sulfate reduction (sulfide oxidation)

Outline

- Emulsified MC252 oil
- What we knew about biodegradation in salt marshes
- Initial salt marsh core studies using emulsified MC252

Study Details

- Salt marsh cores (Lafourche Parish, LA) 6" dia × 36" long and incubated inside a greenhouse.
- Emulsified oil (100 g) added to core surface
- Replicate cores used to evaluate three treatment conditions; (i) natural attenuation with existing nutrient concentrations, (ii) nitrogen amendment and (iii) nitrogen + sulfate amendment.

Study Details

- Short-term biodegradation (0-3 months). For each treatment condition, cores were sacrificed for oil analysis every ~30 days. The cores were cut into 2 cm sections from the top and oil was extracted and analyzed from the soil sections 0-2 cm, 2-4 cm and 8-10 cm (GC-MS of PAHs, denaturing gradient gel electrophoresis, nutrients)
- Longer-term (320 days)-replicate cores sacrificed after ~10 months

MC252 PAH Compounds (mg PAH/kg soil after 100 mL of emulsion)

- Naphthalene (<0.1)
 - C1-NAP 0.51
 - C2-NAP <0.1
 - C3-NAP <0.1
 - C4-NAP <0.1
- Phenanthrene (3.1)
 - C1-PHEN 15.2
 - C2-PHEN <0.1
 - C3-PHEN <0.1
 - C4-PHEN 0.53

- Dibenzothiophene (<0.1)
 - C1-DBZ <0.1
 - C2-DBZ 8.0
 - C3-DBZ 5.6
 - Chrysene (2.5)
 - C1-CHRYS 1.3
 - C2-CHRYS 1.2
 - C3-CHRYS 1.0

 Σ PAHs = 50-70 mg/kg in 0-2 cm

SHORT-TERM

Phenanthrene and C1-phenanthrene

SHORT-TERM

C2-dibenzothiophene C3-dibenzothiophene

SHORT-TERM

Distribution of Σ PAH's with depth

LONGER-TERM

Phenanthrene and C1-phenanthrene

after 326 days

LONGER-TERM

C2-dibenzothiophene C3-dibenzothiophene

after 326 days

LONGER-TERM

Distribution of Σ PAH's with depth

Eubacterial-DGGE on 0-2 cm soil samples

Diverse populations in all treatments

Bacteroidetes spp

Future directions

FIGURE 1. (A) Total (C15–C44) alkane hopane ratio versus time in aerated microcosms. (B) Total PAH (phenanthrene, C1-C2; naph-thalene, C1-C2) hopane ratio versus time.