Remineralization of Hydrocarbon in the northern Gulf of Mexico bottom waters in 2010 Summer – a multi-year data comparison

Xinping Hu
Wei-Jun Cai
Department of Marine Sciences, University of Georgia

Nancy N. Rabalais
Louisiana Universities Marine Consortium

nature.com ▶ journal home ▶ advance online publication ▶ letter ▶ abstract

ARTICLE PREVIEW

view full access options

NATURE GEOSCIENCE | LETTER

Acidification of subsurface coastal waters enhanced by eutrophication

Wei-Jun Cai, Xinping Hu, Wei-Jen Huang, Michael C. Murrell, John C. Lehrter, Steven E. Lohrenz, Wen-Chen Chou, Weidong Zhai, James T. Hollibaugh, Yongchen Wang, Pingsan Zhao, Xianghui Guo, Kjell Gundersen, Minhan Dai & Gwo-Ching Gong

Affiliations | Contributions | Corresponding author

Nature Geoscience (2011) | doi:10.1038/ngeo1297

Received 11 April 2011 | Accepted 22 September 2011 | Published online 23 October 2011

Gulf hypoxia formation mechanism

http://www.gulfhypoxia.net/

2010 summer hypoxia

http://www.gulfhypoxia.net/

Question:

Did the DWH oil spill contribute to O_2 consumption in shelf waters of the northern Gulf of Mexico in the summer of 2010?

Hypoxic zone record

The area of Gulf hypoxia was not significantly larger than the 5-yr average

Storm events (Hurricane *Alex*, Tropical Depression *Bonnie*)

from the river. "It would be difficult to link conditions seen this summer with oil from the BP spill," said Rabalais, "in either a positive or negative way." The slicks were not continuous over

(2010 Gulf Hypoxia Press release, http://www.gulfhypoxia.net)

2006-2011 sampling stations (20-50 m)

Assumptions

- Bottom water in the hypoxic zone comes from lateral movement of offshore water
- During the development of hypoxia, there is no exchange between the atmosphere and the bottom water (i.e., no overturning)

Reaction stoichiometry - marine organic carbon

 Typical remineralization of marine-produced organic matter (with Redfield composition)

```
(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 138O_2 \rightarrow 106CO_2 + 16HNO_3 + H_3PO_4
```

O₂ consumption : CO₂ production

138 : 106

ratio = 1.3

Reaction stoichiometry - hydrocarbon

Remineralization of alkane (C_nH_{2n+2}) and alkene (C_nH_{2n}) – major components of petroleum

$$C_nH_{2n+2}+(3n+1)/2O_2 \rightarrow nCO_2 + (n+1)H_2O$$

 $C_nH_{2n}+3n/2O_2 \rightarrow nCO_2 + nH_2O$

O₂ consumption : CO₂ production

```
(3n+1)/2 : n = 1.5~2 (alkane)
```

3n/2 : n = 1.5 (alkene)

Difference in reaction stoichiometry

With the same amount of oxygen consumption, DIC production from remineralization of hydrocarbon is smaller!

2011 hypoxic bottom water- organic carbon source

Implications

- Hydrocarbon remineralization did occur in the nGOM shelf waters following the DWH event
- Reaction stoichiometry is a useful tool to examine the effect of oil spill on the ocean waters, especially when multi-year data are compared
- Currently, there was no indication of petroleum hydrocarbon remineralization in the 20-50 m depth band in July 2011, primary driving force for oxygen consumption remains remineralization of algal material ($\delta^{13}C_{OM} = -22\%$)
- Water column data do not necessarily reflect potential impact of oil contamination/remineralization in coastal/shelf sediments, and shallower depth (<20 m).</p>

To be analyzed...

water samples from near the oil leak site...

Advertisement (UGA carbon cycle lab)

- High precision instruments in characterizing seawater inorganic carbon system (DIC, alkalinity, pH)
- 2. Underway pCO₂ for survey of sea surface CO₂ partial pressure
- Microelectrochemical sensors for sediment studies

Acknowledgements

- Wei-Jen Huang, Yongchen Wang, Guirong Han, Baoshan Chen, Qian Li (UGA)
- Mandy Joye (UGA)
- Steve Lohrenz, Kjell Gunderson, and Alan Shiller (USM)
- Mike Murrell, John Lehrter, Jim Hagy (EPA Gulf Ecology Division)
- Steve DiMarco (TAMU)
- Lora Pride and Windy Morrison (LUMCON)
- Chris Langdon (RSMAS)
- Rik Wanninkhof, Tsung-Hung Peng (AOML/NOAA)
- Jay Brandes (SkIO)
- OSV Bold (EPA), R/V Cape Hatteras, R/V Pelican, and R/V Ron Brown
- Gulf of Mexico and US East Coast Carbon (GOMECC) Project

Mississippi River DIC time-series

http://nwis.waterdata.usgs.gov/usa/nwis/qwdata

Year

Data source: N.N. Rabalais, Louisiana Universities Marine Consortium, R.E. Turner, Louisiana State University
Funded by: NOAA, Center for Sponsored Coastal Ocean Research