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ABSTRACT

Applying a flow-dependent background error covariance (B matrix) in variational data assimilation has
been a topic of interest among researchers in recent years. In this paper, an ensemble-based four-
dimensional variational (En4DVAR) algorithm, designed by the authors, is presented that uses a flow-
dependent background error covariance matrix constructed by ensemble forecasts and performs 4DVAR
optimization to produce a balanced analysis. A great advantage of this En4DVAR design over standard
4DVAR methods is that the tangent linear and adjoint models can be avoided in its formulation and
implementation. In addition, it can be easily incorporated into variational data assimilation systems that are
already in use at operational centers and among the research community.

A one-dimensional shallow water model was used for preliminary tests of the En4DVAR scheme.
Compared with standard 4DVAR, the En4DVAR converges well and can produce results that are as good
as those with 4DVAR but with far less computation cost in its minimization. In addition, a comparison of
the results from En4DVAR with those from other data assimilation schemes [e.g., 3DVAR and ensemble
Kalman filter (EnKF)] is made. The results show that the En4DVAR yields an analysis that is comparable
to the widely used variational or ensemble data assimilation schemes and can be a promising approach for
real-time applications.

In addition, experiments were carried out to test the sensitivities of EnKF and En4DVAR, whose
background error covariance is estimated from the same ensemble forecasts. The experiments indicated that
En4DVAR obtained reasonably sound analysis even with larger observation error, higher observation
frequency, and more unbalanced background field.

1. Introduction

The background error covariance plays an important
role in most data assimilation systems. Usually, the
background error covariance model is applied, which is
assumed to be homogeneous, isotropic, stationary, and

quasigeostrophic in its structure (Daley 1991) and
which is determined by a few parameters that are esti-
mated from innovation statistics (Hollingsworth and
Lonnberg 1986) or the National Meteorological Center
(NMC, now known as the National Centers for Envi-
ronmental Prediction or NCEP) method (Parrish and
Derber 1992). Although these assumptions make the
error covariance statistics and their application to data
assimilation much easier, it is evident that they are not
always appropriate, especially under baroclinically un-
stable conditions.

To improve the background error covariance, two
methods have recently been explored. One is to con-
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struct a more accurate background error covariance
model by introducing flow-dependent features into the
statistics. For example, Dee (1995) presented a scheme
for the online tuning of parameters in the error covari-
ance model based on a maximum-likelihood approach,
in which a batch of simultaneous observations are used
for making those parameters flow dependent. Xu et al.
(2001) and Xu and Wei (2001, 2002) estimated the
three-dimensional error covariance using a multilevel
least squares fitting method. Fisher (2003) used a spec-
tral method to allow spatially inhomogeneous vertical
and horizontal correlation models. Derber et al. (2003)
employed the recursive filter to create inhomogeneous
and anisotropic background errors in the grid space.
Another approach uses ensemble forecast statistics to
produce flow-dependent background error covariances
(Evensen 1994). Most ensemble-based data assimila-
tion algorithms are based on Kalman filter theory (Kal-
man 1960), so they are generally called ensemble Kal-
man filtering (EnKF). There are several formulations
of EnKF that have been developed in recent years, such
as a double EnKF (Houtekamer and Mitchell 1998), an
ensemble square root filter (EnSRF; Whitaker and
Hamill 2002), an ensemble adjusted Kalman filter
(EAKF; Anderson 2001), and an ensemble transform
Kalman filter (ETKF; Bishop et al. 2001). In recent
years, some researchers have employed ensemble-
based nonsequential assimilation algorithms, which in-
clude temporal covariances within the assimilation win-
dow. Evensen and van Leeuwen (2000) presented an
ensemble Kalman smoother, using only forward-in-
time model integrations. Hunt et al. (2004) extended
the ensemble Kalman filter to a four-dimensional as-
similation form (4DEnKF) so that EnKF could handle
all observations within an assimilation window. Zupan-
ski (2005) presented the maximum-likelihood ensemble
filter (MLEF), which employed the ensembles needed
to calculate the Hessian preconditioning and gradient
of the cost function so that the background error co-
variance from the ensemble statistics could be used in a
variational scheme.

Comparing with the deterministic data assimilation,
the ensemble-base data assimilation can easily provide
the analysis probability distribution function (pdf)
sampled by the ensemble as the initial condition of the
ensemble forecast. EnKF has been a popular research
topic in the numerical weather prediction (NWP) field
during recent years. It has been proven that both
4DVAR and a Kalman filter can produce the same
results at the end of an assimilation window (Hamill
2002; Li and Navon 2001) under the following condi-
tions: (a) The observation operator and model are lin-
ear; (b) the observation and background have Gauss-

ian, unbiased random errors; (c) the model error is ne-
glected; and (d) the same background error covariance
is used. When compared with the 4DVAR technique,
EnKF has its advantage; it does not need any tangent
linear or adjoint model, as is necessary in 4DVAR but
not easily coded.

Although many encouraging research results of
EnKF have been obtained in either global data assim-
ilation (Mitchell et al. 2002; Houtekamer and Mitchell
2005) or regional mesoscale data assimilation (Snyder
and Zhang 2003), there is not much evidence to indicate
that EnKF outperforms variational data assimilation
systems in operational applications. Since variational
data assimilation has been practically proven to be a
very successful technique in operational NWP, the ap-
plication of ensemble-based background error covari-
ance statistics to variational data assimilation should be
a good choice, which can help in extracting the flow-
dependent error covariance from ensemble forecasts
(like EnKF) to the analysis. Lorenc (2003) proposed
that the control variable was preconditioned upon the
perturbation of the background ensemble forecast so
that the background error covariance in the variational
system is flow dependent. Buehner (2005) adopted a
similar hybrid ensemble 3DVAR (En3DVAR) scheme,
and implemented it to a global model data assimilation
system. He showed that the scheme could produce re-
sults that were similar to EnKF but better than
3DVAR. Both Lorenc (2003) and Buehner (2005) men-
tioned that 4DVAR with the background error covari-
ance statistics from ensemble forecasts (En4DVAR)
should be developed if the tangent-linear and adjoint
models are available. There are four-dimensional en-
semble-based assimilation algorithms, such as MLEF
(Zupanski 2005) or 4DEnKF (Hunt et al. 2004; Fertig
et al. 2007), that have shown that the background error
covariance based on statistics from ensemble forecasts
can be used in variational algorithms. The 4DVAR
method can gain the optimal trajectory as a nonsequen-
tial assimilation algorithm, which can effectively assimi-
late high temporal–spatial resolution data, for example,
satellite observations (Xiao et al. 2002; Simmons and
Hollingsworth 2002). In addition to the advantages
from the 4DVAR approach, En4DVAR can also offers
benefits from the EnKF data assimilation technique,
such as flow-dependent background error covariance
and better ensemble initial fields. How to take advan-
tage of the benefits from both approaches (EnKF and
4DVAR) and make the En4DVAR feasible and robust
is the focus of this study. Practically, we should try to
avoid the tedious tangent-linear and adjoint models in
the proposed En4DVAR scheme, but without losing its
nonsequential data assimilation character. Unlike
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MLEF (Zupanski 2005) or 4DEnKF (Hunt et al. 2004;
Fertig et al. 2007), our approach (En4DVAR) adopts
the incremental and preconditional scheme in the varia-
tional algorithm so that it can be more easily incorpo-
rated into many of the operational centers that using
variational assimilation as their operational data assim-
ilation system. It may also be more easily encourage the
variational data assimilation research community to in-
clude the advantages in ensemble-based data assimila-
tion algorithms.

This paper is arranged as follows: In the next section,
we briefly review EnKF and 4DVAR, and propose an
En4DVAR technique. The new En4DVAR formula-
tion uses background perturbations in observation
space during the minimization iteration process. As de-
rived in the following section, the En4DVAR avoids
tangent linear and adjoint models while keeping the
characteristics of 4DVAR. In section 3, some proof-of-
concept tests with simple designs are presented. We
evaluate the performance of the En4DVAR scheme
and compare it with other data assimilation techniques
using a one-dimensional shallow water model. The last
section presents a summary and conclusions from this
study.

2. En4DVAR formulation

a. EnKF analysis algorithm

The proposed En4DVAR scheme combines the nec-
essary components from EnKF and 4DVAR. EnKF
is a Kalman filter but using a Monte Carlo ensemble
of short-range forecasts to estimate the covariance of
the forecast error (Evensen 1994). Assuming there are
N ensemble members, the background error is esti-
mated by

X�b �
1

�N � 1
�xb1 � xb, xb2 � xb, . . . , xbN � xb�,

�1�

where x is a state vector (to ensemble-based assimila-
tion, a matrix that each column represents one en-
semble member state vector). The background error
covariance is therefore approximately calculated by

B � X�bX�b
�. �2�

The final analysis of the EnKF is

Xa � Xb � BH��HBH� � O��1�y � HXb� . �3�

In the formulation of (1)–(3), subscript a denotes analy-
sis, subscript b means background, N is the ensemble
number, X�b is the matrix whose column is the normal-

ized deviations from the ensemble mean, B is the back-
ground error covariance, O is the observation error co-
variance, y is the observation vector, T represents the
matrix transpose, H is the observation operator, and H
is the tangent linear observation operator.

In the EnKF implementation, Eqs. (1) and (2) are
transformed to observation space as follows:

HX�b �
1

�N � 1
�Hxb1 � Hxb, Hxb2 � Hxb, . . . ,

HxbN � Hxb�, �4�

BH� � X�b�HX�b��, and �5�

HBH� � HX�b�HX�b��. �6�

b. Incremental 4DVAR algorithm

Most variational data assimilation systems adopt an
incremental approach (Courtier et al. 1994) and the
preconditioning technique (Gilbert and Lemarechal
1989). Introducing the preconditioning matrix U, and
defining

B � UUT, �7�

we obtain

xa � xb � Uw. �8�

In 4DVAR, we introduce the forecast model, M, and
observation vectors at different times (yi). The inno-
vations at different times (with subscript i) are calcu-
lated by

di � HM�xb� � yi. �9�

The cost function in control variable space becomes

J�w� �
1
2

wTw �
1
2 	

i�0

I

�HMUw � di�
TO�1�HMUw � di�,

�10�

where I is the total number of time levels on which
observations are available. The gradient of the cost
function with respect to the control variables is

�wJ � w � 	
i�0

I

UTMTHTO�1�HMUw � di�. �11�

In Eqs. (10) and (11), M is the tangent linear model and
MT is the adjoint model. Calculation of the cost function
gradient using Eq. (11) involves the integrations of the
linear and adjoint models. Therefore, development of
the tangent linear and adjoint models is usually neces-
sary for the realization of the 4DVAR approach in data
assimilation (Talagrand and Courtier 1987; Zupanski
1993; Zou and Kuo 1996; Xiao et al. 2000).
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c. En4DVAR algorithm

In the variational algorithm, Lorenc (2003) employed
the perturbation in an ensemble forecast that was cal-
culated by Eq. (1) to precondition the control variable
of the variation:

xa � xb � X�bw. �12�

Defining the innovation as

d � H�xb� � y, �13�

the cost function in control variable space is written as

J�w� �
1
2

wTw �
1
2

�HX�bw � d�TO�1�HX�bw � d�, �14�

where w is the control variable and d is an innovation
that is the difference between the background and the
observation in observation space. As Lorenc (2003)
mentioned, this scheme is easily extended to 4DVAR
form and the forward model is included if the back-
ground forecast is not at the same time as the obser-
vation and the sum notation will be added to the
observation cost function. If the scheme is applied to
4DVAR, it will use a flow-dependent background error
covariance at the beginning of the assimilation window
and implicitly evolve within the window as 4DVAR
does if the tangent linear model and adjoint model are
available (Buehner 2005). In this study, we try to ex-
tend Eq. (14) to formulate an En4DVAR scheme.

Similar to Lorenc’s (2003) definition of the cost func-
tion as shown in Eq. (14), we can use the background
perturbation to precondition the 4DVAR control vari-
ables. Equation (10) is then rewritten as

J�w� �
1
2

wTw �
1
2 	

i�0

I

�HMX�bw � di�
TO�1�HMX�bw � di�.

�15�

This is the cost function of the proposed En4DVAR
scheme. The gradient of the cost function with respect
to the control variables becomes

�wJ � w � 	
i�0

I

X�b
TMTHTO�1�HMX�bw � di�. �16�

Although En4DVAR can be implemented by calculat-
ing the gradient using Eq. (16) and the flow-dependent
background error covariance structure from the en-
semble forecast can be obtained at the beginning of the
4DVAR time window, the tangent linear model M and
its adjoint MT have to be employed in the 4DVAR
minimization.

To further formulate the En4DVAR scheme, we
adopt the idea of EnKF and introduce the perturbation

in observation space. Similar to Eq. (4), the background
error (estimated from the ensemble perturbations) can
be transformed to observation space via

HMX�b �
1

�N � 1
�HMxb1 � HMxb, HMxb2

� HMxb, . . . , HMxbN � HMxb�. �17�

The gradient of the cost function (16) is reformulated as

�wJ � w � 	
i�0

I

�HMX�b�TO�1�HMX�bw � di�. �18�

In Eq. (18), the background error in observation
space is calculated just once using ensemble forecasts
outside the minimization iteration, so that the compu-
tational and coding costs are greatly reduced. We can
see that the adjoint model MT is elegantly avoided in
(18) by the transformation of the background error to
observation space in (17). Moreover, Eq. (17) indicates
that En4DVAR does not need a linear approximation
in the forward model and observation operators.

According to (12), the analysis increment is actually
a linear combination of the predicted ensemble pertur-
bations. The coefficient of the linear combination, w,
can be estimated by minimizing the cost function in
(14). After preconditioning, multiplying U by its adjoint
can be implemented by use of a recursive filter (Lorenc
1992; Hayden and Purser 1995). However, the recursive
filter cannot be applied to Eqs. (16) or (18), because
some error correlation models, for example, a Gaussian
model, cannot be used. In Eq. (18), HMX�b is a m 
 N
dimensional matrix (m is the observation dimension).
Since m is usually small (especially in regional models),
the calculation of HMX�b or (HMX�b)T is not too expen-
sive. Moreover, a reduction of the dimensions in the
En4DVAR control state vector makes the minimiza-
tion cost even less.

Comparing 4DVAR and En4DVAR, some proper-
ties of En4DVAR can be exposed. In the 4DVAR
scheme, the B matrix is in full rank. The 4DVAR con-
trol variable w is an n-dimensional state vector that is
the same as the xb dimension (n is the model’s degree of
freedom). In En4DVAR, on the other hand, B is esti-
mated from the ensemble forecasts as shown in Eq. (2);
it will be a degeneration matrix and its rank is not larger
than the ensemble number N and its smallest eigen-
value is 0. If the estimated B is applied to the no-
precondition 4DVAR scheme, the condition number of
the cost function becomes larger and the minimization
is difficult to converge. A discussion of the condition
number of the cost function and the minimization con-
vergence can be found in Bouttier and Courtier (2007).
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If using the perturbation precondition as shown in Eq.
(12), the En4DVAR control vector dimension is N and
the minimization of the cost function is in N-dimen-
sional space. Therefore, the degenerated B matrix can
make the En4DVAR minimization converge effi-
ciently.

Although the minimization can be realized in sub-
space spanned by an ensemble, the analysis is hardly
extracting the full information from the control variable
in Eq. (12) because the model space is usually larger
than the ensemble space. This is similar to the so-called
sample error problem in ensemble-based data assimila-
tion. Many studies have shown that the sample error is
a challenge to ensemble-based data assimilation. Sev-
eral approaches, such as the Schur product (Houteka-
mer and Mitchell 2001; Lorenc 2003; Buehner 2005),
local truncation (Houtekamer and Mitchell 1998), an
inflation factor (Anderson and Anderson 1999), and a
hybrid scheme (Hamill and Snyder 2001; Lorenc 2003)
have been proposed to relax this problem. In an
En4DVAR implementation with high-dimensional
space, it is necessary to use localization to reduce the
sample error. If localization is not used and the model
is linear, the covariance at any later time in the assim-
ilation window will be equal to those obtained from
evolving the initial ensemble members. That is, the co-
variance will be restricted to the low-dimensional sub-
space spanned by the evolved ensemble members.
However, if localization is applied to the covariance at
the beginning of the window, the standard 4DVAR or
En4DVAR schemes using the tangent linear and ad-
joint models [Eq. (16)] will implicitly evolve these co-
variances, which, due to the localization, span a much
higher dimensional space. But this approach will come
with a larger computation cost due to tangent linear
and adjoint model integration. Lorenc (2003) and
Buehner (2005) have indicated that the Schur operator
can be used in ensemble-based variational algorithms.
Similar to the truncated spectral expansion idea in ap-
pendix B of Buehner (2005), the Schur operator after
EOF decomposition can be adopted for En4DVAR lo-
calization, and the computer cost can be reduced. We
will employ this technique for localization in our real-
model experiment with the Weather Research and
Forecasting model (WRF).

3. Experiments with a one-dimensional shallow
water model

In this section, we present preliminary results of the
En4DVAR scheme and compare them with the results
from other data assimilation schemes based on a dis-
crete version of the one-dimensional shallow water
model:

�u

�t
� U

�u

�x
� f� �

��

�x
� 0, �19�

��

�t
� U

��

�x
� fu � 0, and �20�

��

�t
� U

��

�x
� �

�u

�x
� 0. �21�

The comparisons among variational and ensemble data
assimilation schemes are made under the condition that
makes the Kalman filter and 4DVAR equivalent, which
is described in section 1.

a. Experiment design

The advection terms in (19)–(21) are linearized with
constant U (17 m s�1). The Coriolis parameter f is
1.03 
 10�4 s�1. The model is discretized with a uni-
formly spaced grid, using a horizontal resolution of 300
km and 20 grid points (D � 20). The time step for the
integration is 600 s. We solve (19)–(21) numerically
with an Euler backward-in-time integration scheme.

The initial height field is defined as

�j
0 � �0 � fUd � Af sin�4�� j � 1�

D � 1 � sin�8�

17�, �22�

where �0 � 5.5 
 104 m2 s�2, U � 20 m s�1, and A �
(1.5/�) 
 10�7 m2 s�2. We use j as the grid number. The
initial  component of the wind is derived from the
height with the geostrophic relation, and the u wind is
the horizontal derivative of the  wind. For a quasigeo-
strophic solution to (19)–(21), the velocity component u
is at least an order of magnitude smaller than , and we
will therefore completely ignore u in the presentation
of our results.

Figure 1 shows a schematic diagram of our experi-
mental design. The 1D shallow water model is inte-
grated for 132 h with the specified initial conditions,
and the results are taken as the “true” atmospheric-
state evolution. With the simulated true atmospheric
state, we set up an observing network that provides
height and  wind observations at each grid point for
every 6 h. The simulated observation errors are speci-
fied as 5 m2 s�2 and 0.03 m s�1, respectively. The con-
trol evolution is obtained from the integration of the
1D shallow water model by adding normal random per-
turbations to the specified initial field. The standard
deviations (spreads) of the normal random perturba-
tions for the height and the  component of the wind
are 80 m2 s�2 and 0.1 m s�1, respectively. With the same
standard deviations of the normal random perturba-
tions, we construct 50 members of the ensemble initial
conditions, and the 50-member ensemble forecast is ob-
tained with the same 1D shallow water model integra-
tions.
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After 60 h of integration, the spreads of the ensemble
forecast for height and the  component of the wind are
reduced to 20 m2 s�2 and 0.1 m s�1, respectively. Since
the ensemble forecast at 60 h is more balanced, we use
the result as a background field for all assimilation ex-
periments (i.e., data assimilation starts at 60 h). The
assimilation window is set at 24 h. A 48-h forecast is run
after the data assimilation. Different data assimilation
schemes (3DVAR, 4DVAR, EnKF, and En4DVAR,
proposed in this paper) are applied. All variational
schemes use the steepest descent method for minimi-
zation of the cost function (Snyman 2005). The local-
ization is not applied in the following ensemble-based
assimilation experiments because they are performed in
a low-dimensional space. Applying localization gives
few positive impacts in these experiments. However,
when we implement En4DVAR in real-dimensional
space, the Schur operator localization scheme can re-
duce noise effectively. The results using En4DVAR lo-
calization in real-dimensional space will be shown in a
future paper.

b. Preliminary evaluations of the En4DVAR
scheme

With the 50 members of ensemble perturbations, the
background error statistics are computed and trans-
formed to observation space using Eq. (17). The gradi-

ent of the cost function in En4DVAR is calculated by
Eq. (18) in the minimization procedure. Figure 2 shows
the variations of the cost function and gradient norm
with iterations (solid line). With 20 iterations, the mini-
mization converges well; the cost function value is re-
duced by over one order after 20 iterations. The analy-
sis fields after 20 iterations of minimization are very
close to the “true” fields (Fig. 3). In this experiment, the
first-guess fields before minimization are from the nor-
mal random perturbations to the true fields. Figures 3a
and 3b indicate that there are obvious deviations
around the true fields in the first guess of the height and
the  component of the wind. However, the deviations
of the En4DVAR analysis are close to zero in either
positive or negative perturbed locations, indicating that
the En4DVAR scheme works robustly.

As a comparison, we carried out an experiment using
the standard 4DVAR approach. The gradient of the
cost function is calculated by the adjoint model. The
background error covariance matrix B is constructed
assuming that the error correlation is Gaussian and the
error variance is homogenous. Using the same minimi-
zation procedure, the variations of the cost function
and gradient norm with iterations are shown in Fig. 2
(dashed line). Both En4DVAR and standard 4DVAR
can achieve the minimization of the defined cost func-
tion. The analyses of the height and the  component of

FIG. 1. The experimental design flow chart. The true trajectory is obtained from a geo-
strophic initial field. The initial perturbation (noted as ptb) is added to the model in order to
obtain the control (noted CTL) initial field. The data assimilation window is set between 60
and 84 h. The observations (noted as obs) are available at every 6 h by adding normal
perturbations to the true state. A set of similar perturbations is added to the CTL initial field
and the observations. The ensemble initial field and the perturbation observations are pro-
vided to the ensemble-based data assimilation, e.g., EnKF and En4DVAR. For deterministic
data assimilations (3DVAR and 4DVAR), the ensemble background mean and ensemble
observation mean are adopted.
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the wind in both schemes are very close to each other.
(We therefore omitted the similar figure for the stan-
dard 4DVAR method.) However, the costs of the stan-
dard 4DVAR and En4DVAR are different. Because
the background error covariance in En4DVAR is cal-
culated by ensemble forecasts and its condition num-
ber is larger than that of the standard 4DVAR in this
experiment, more iteration steps are required in
En4DVAR to achieve the same minimization. How-
ever, the computing time of every iteration step in
En4DVAR is far less than in 4DVAR because the ad-
joint model is not needed to calculate the gradient.

To further evaluate the proposed En4DVAR
scheme, we also conducted an experiment using Eq.
(16) to calculate the gradient of the cost function. This
still uses the adjoint model in the formulation, but the
ensemble background error covariance and precondi-
tioning are adopted. It is indicated that the gradients of

the cost function calculated by using Eqs. (16) and (18)
are almost identical. The variations of the cost function
and the gradient with iterations are similar to the solid
line in Fig. 2. The height difference between the for-
mulations of En4DVAR in Eqs. (16) and (18) is less
than 10�5 m2 s�2. The  component of the wind differ-
ence is less than 10�7 m s�1. If the models and obser-
vation operators in Eqs. (16) and (18) were linear, the
gradients calculated by both equations should be the
same. However, there is still a slight difference in the
gradient of the cost function as calculated by Eqs. (16)
and (18) because a very weak nonlinear term in the
shallow water model exists.

It should be noted that the adjoint model calculation
is usually time consuming. The advantage of En4DVAR

FIG. 2. Variations of (a) the cost function and (b) its gradient
with respect to iterations for En4DVAR (solid line) and 4DVAR
(dashed line) experiments.

FIG. 3. En4DVAR related (a) ensemble mean height error and
(b) ensemble mean -component wind error at the first analysis
time. The light-gray bar is the background ensemble mean error
(mean � true). The gray bar is the observation ensemble mean
error (mean � true). The black bar is the analysis ensemble mean
error (mean � true).
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using background perturbation in observation space is
that the adjoint model integration is avoided in its mini-
mization procedure. We found that the computation
cost of each iteration with the adjoint model using Eq.
(16) is over 300 times more expensive than the scheme
without the adjoint model using Eq. (18). As
En4DVAR without the adjoint model can achieve al-
most the same minimization as when using the adjoint
model, the reduction in computational costs shows
great potential for 4DVAR in real-time applications.

To evaluate the performance of the developed
En4DVAR scheme, we calculated the variations of the
absolute errors (compared with the truth) in assimila-
tions and subsequent forecasts from experiments using
3DVAR, 4DVAR, and EnKF, and compared them

with the results from En4DVAR (Fig. 4). Since the
background error covariance in 3DVAR is static, its
absolute error between the analysis and truth (A � T )
is not reduced except at the first analysis time (at 60 h).
In fact, the errors for the height are slightly increased in
the 3DVAR cycling analyses at 66, 72, 78, and 84 h.
Although the same background error covariance was
used in 4DVAR as in 3DVAR, the absolute error of
the forecast in the 4DVAR experiment is reduced be-
cause 4DVAR has the capability to implicitly develop
background error covariance information in the assim-
ilation window. Comparing the results of EnKF and
En4DVAR, it is seen that the analysis errors of EnKF
(compared with the truth) are sequentially reduced at
every analysis time. En4DVAR, on the other hand,
maximally reduced its analysis error at 60 h (the begin-
ning of the assimilation window). We believe this is a
result of the impact of the future observations at 66, 72,
78, and 84 h.

c. Some sensitivity studies of En4DVAR and its
comparison with EnKF

EnKF and En4DVar obtained similar results at the
end of the assimilation window (at 84 h), as shown in
Fig. 4. We choose the results of EnKF and En4DVAR
in Fig. 4 as control experiments in the studies of this
section. Two more sets of experiments for both EnKF
and En4DVAR are conducted to test the sensitivity of
the  observation errors (Fig. 5). If the error of the 

FIG. 4. Mean analysis and forecast errors of different data as-
similation schemes during the assimilation (from 60 to 84 h) and
a 48-h forecast (from 84 to 132 h): (a) height field and (b) -
component wind field. (Dashed–dotted line is for the CTL experi-
ment when no observation is assimilated, the thin-dashed line is
for 3DVAR, the thick-dashed line is for 4DVAR, the thin solid
line for EnKF, and the thick solid line for En4DVAR.)

FIG. 5. The -component wind mean analysis and forecast error
trajectories for different -component wind observation errors in
EnKF and En4DVAR. Thin lines are for EnKF and thick lines for
En4DVAR. Solid line is for the original -component wind ob-
servation error, dashed–dotted line is for doubling the -
component wind observation error, and dashed line is for tripling
the -component wind observation error.
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wind observation is amplified, for example, the contri-
bution of the  wind observation to the analysis should
be reduced accordingly. Due to their multivariate fea-
tures in both the EnKF and En4DVAR schemes, the
impact of the height observation on the  wind analysis
increment increases with the amplified  observation
error. When the  observation error is tripled, which is
around the magnitude of the  background error, the 
analysis error for either EnKF or En4DVAR is still far
less than the background error due to the impact of the
observation height. The larger the  observation error,
the smaller the analysis error of En4DVAR than EnKF
is at the end of the window. It seems that En4DVAR
can extract more information from the height observa-
tions than EnKF can in the  wind analysis.

We also conducted experiments to compare the sen-
sitivities of EnKF and En4DVAR to the observation
frequencies. In this set of experiments, the control ex-
periments are 5H-EnKF and 5H-En4DVAR, which as-
similate only height observations at 60, 66, 72, 78, and
84 h (five times) without any  observations. In this
case, the  wind analysis increment is completely ex-
tracted from the height observations. This is equivalent
to assigning an infinite  observation error in the 5H-
EnKF and 5H-En4DVAR experiments. From Fig. 6, it
can be seen that the analysis error in 5H-En4DVAR is
far less than that in 5H-EnKF. Comparing 5H-EnKF
and 5H-En4DVAR in Fig. 6 with the results of differ-
ent  errors in Fig. 5, the improvement of the  analysis

in En4DVAR compared with EnKF is increased with
the increase of the  observation error.

As sensitivity studies to different observation fre-
quencies, two more sets of experiments are carried out.
In 2H-EnKF–2H-En4DVar, the height observations
are set at 60 and 66 h (two times), and in 1H-EnKF–
1H-En4DVar the height observation is set at 60 h (one
time only). As Fig. 6 shows, the lower the height ob-
servation frequency is, the closer the results of EnKF
and En4DVar are. When only one time–height obser-
vation is assimilated, En4DVAR, which is degenerated
to En3DVAR, obtained almost the same error varia-
tion as EnKF (so only one line is shown in Fig. 6).

To test the assimilation ability of EnKF and
En4DVAR under the unbalanced conditions, we de-
signed experiments with univariate analysis, in which
each variable analysis’s increments will be produced by
its own observations and background. The control ex-
periments still adopt the EnKF and En4DVAR design
(with results shown in Fig. 4) but with a univariate al-
gorithm. Comparing Fig. 7 and Fig. 4, it is shown that
the error of the univariate analysis is slightly larger than
that of the multivariate analysis because the multivari-
ate analysis can use more information from other vari-
able observations. In Fig. 7, the univariate analyses of
EnKF and En4DVAR are also similar at the end of the
assimilation window.

When the  wind observation error is magnified 3
times, the analysis is more unbalanced because the geo-
tropic relation in height and wind observations is fur-
ther reduced (their errors are uncorrelated). As shown
in Fig. 7, height error variations appear to oscillate after
the analysis. These oscillations do not appear in the
experiments with the multivariate algorithm (Fig. 4). In
the assimilation window, the oscillation of the error
variations in the En4DVAR experiment is less than
that in EnKF. The improvement of the analysis and
forecast in En4DVAR is larger than that in EnKF in
unbalanced situations compared to the control experi-
ments.

4. Summary and conclusions

Hybrid—ensemble-based and variational data assim-
ilation—techniques have been a popular research topic
in recent years. Its performance in three-dimensional
global model data assimilation has been evaluated by
Buehner (2005). As 3DVAR is gradually updated to
4DVAR in many research and operational centers, en-
semble-based four-dimensional variational algorithms
should be developed. After reviewing the classical
EnKF algorithm and Lorenc’s (2003) ensemble-based
variational algorithm, we have proposed an ensemble-

FIG. 6. The -component wind mean analysis and forecast error
trajectories in EnKF and En4DVAR with height observations but
no -component wind observations. The frequencies of the de-
signed height observations are, respectively, five observation
times at 60, 66, 72, 78, and 84 h (solid lines); two observation times
at 60 and 66 h (dashed–dotted lines); and one observation time at
60 h (dash lines). The thin lines are for EnKF and thick lines are
for En4DVAR.
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based four-dimensional variational algorithm. This
scheme uses background perturbation in observation
space to calculate the gradient during the minimizing
procedure so that it does not need a tangent linear
model or an adjoint model in its formulation.

The performance of En4DVAR was evaluated by
use of shallow water model experiments. The conver-
gence of the En4DVAR cost function needs a few more
iterations than that of traditional 4DVAR. However,
each iteration of the En4DVAR minimization needs
far less computation time than that of traditional
4DVAR. A great advantage of En4DVAR is that it can
be implemented without a tangent linear model or an
adjoint model. Our experiments have indicated that
En4DVAR without using tangent linear and adjoint
models produced an analysis result that is similar to

the approach that used tangent linear and adjoint
models, but with much less computation cost. Among
the experiments with different data assimilation
schemes (3DVAR, 4DVAR, EnKF, and En4DVAR),
En4DVAR produced comparable and reasonably
sound analysis results. The sensitivity experiments in
our comparison of En4DVAR and EnKF showed that
En4DVAR is a sophisticated data assimilation algo-
rithm due to its nonsequential analysis character, espe-
cially under the unbalance conditions.

Since the experiments in this paper were carried out
in low-dimensional space with a nearly linear model,
some basic issues of the ensemble-based assimilation
scheme and 4DVAR can be clearly examined. When
En4DVAR is applied in a real NWP environment, the
dimension of the real atmospheric model is far larger
than the ensemble dimension so that the analyses are
prone to incremental noise. Techniques that are more
sophisticated will have to be considered, such as local-
ization, dealing with model error, and analysis balance,
etc. To further test the capability of En4DVAR, we are
implementing it using a real NWP data assimilation sys-
tem (WRF model and WRF data assimilation system)
and conducting experiments with real observational
data. We are testing the Schur operator in En4DVAR
to perform the localization. The localization technique
can reduce the sample noise. In addition, it is important
to have an appropriate assimilation window length and
analysis time when implementing En4DVAR in real
atmospheric model. Some preliminary results are en-
couraging, among them that the En4DVAR can be a
choice for real atmosphere data assimilation. The
implementation details of the En4DVAR scheme with
a real atmospheric model and its experimental results
will be reported upon in the future.
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