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ABSTRACT.—Atlantic goliath grouper Epinephelus 
itajara (Lichtenstein, 1822) are classified as vulnerable by 
the IUCN and have decreasing local populations throughout 
their distribution due to overfishing and habitat degradation. 
Due to their protected status, basic life history information 
that can inform management and conservation is lacking 
for some local populations, including in Brazil. In the 
present study, we examined how δ15N of juvenile Atlantic 
goliath grouper fin rays, a nonlethal method, varied with 
total length across two estuaries in Brazil. A total of 100 
juvenile Atlantic goliath grouper (total length range: 95–505 
mm) were analyzed, and we observed positive relationships 
between δ15N and fish lengths (i.e., evidence of trophic 
growth). Among-estuarine slopes did not differ, suggesting 
trophic growth was consistent among sites despite different 
δ15N values between the northernmost site and a group of 
southern sites, possibly reflecting different isotopic baselines. 
This study is the first effort to provide useful insights into the 
trophic ecology of juvenile Atlantic goliath grouper in Brazil, 
which could help address knowledge gaps and conserve this 
endangered species. The nonlethal methodology employed in 
this study could be used to advance our understanding of the 
trophic ecology of other vulnerable and endangered marine 
fishes and help inform conservation and management 
practices.

Atlantic goliath grouper Epinephelus itajara is the largest epinephelid in the 
Atlantic Ocean, living for at least 37 yrs and growing up to 3 m (total length, TL) and 
400 kg (Sadovy and Eklund 1999). Populations of Atlantic goliath grouper have de-
clined due to overfishing and habitat degradation. The species is currently classified 
as “Vulnerable - VU” by the International Union for Conservation of Nature (IUCN; 
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Bertoncini et al. 2018), and as “Critically endangered - CR” in Brazil (Ordinance 
N°13/2015). The Atlantic goliath grouper was the first marine fish species to have 
a national fishing moratorium in Brazil. However, life history information for this 
species in Brazil is generally lacking and is insufficient to assess its population status, 
especially during its juvenile phase.

Information about the Atlantic goliath grouper juvenile stage is limited through-
out its distribution. In the eastern Gulf of Mexico, juvenile Atlantic goliath grouper 
remain in mangrove habitats for up to 6 yrs and up to about 1 m TL, after which they 
emigrate to reef habitats (Bullock et al. 1992, Koenig et al. 2007). Atlantic goliath grou-
per are generalist feeders with a wide trophic niche (Artero et al. 2015). They are an 
opportunistic ambush predator that feeds at a relatively low trophic position, mainly 
on slow moving teleosts and decapods (Koenig and Coleman 2009). Crustaceans are 
a dominant prey for juveniles (Artero et al. 2015), especially Callinectes sp. (Freitas 
et al. 2015). However, more work on the trophic ecology of juvenile Atlantic goliath 
grouper is needed to improve our understanding of its life history, especially from 
estuarine habitats that may serve as nurseries.

Stable isotope analysis (SIA) has become a common method to study trophic ecol-
ogy (reviewed by Harrod and Stallings 2022), and particularly to estimate trophic 
growth (i.e., positive relationship between fish length and trophic position) of con-
sumers (Minagawa and Wada 1984, Faletti and Stallings 2021). Indeed, nitrogen 
stable isotopes (δ15N) have been extensively applied to estimate trophic growth of 
organisms in food webs (Stricker et al. 2015, Kurth et al. 2019) because of its marked 
isotopic fractionation (i.e., the isotopic shift during the process of food digestion and 
assimilation), usually ranging from 2‰ to 4‰ with each trophic step (Post 2002). In 
addition, spatial variation in δ15N may also reflect accumulation of anthropogenic 
biochemical inputs in aquatic systems (Cabana and Rasmussen 1994, Donadt et al. 
2021). Thus, measuring δ15N can be informative for both life history of focal species 
and background variation in anthropogenic influences (Curtis et al. 2020).

Dorsal muscle is the most common tissue used for fish SIA analysis (Condini et al. 
2015, Coletto et al. 2021), but requires lethal sampling (Hanisch et al. 2010). Thus, 
the use of muscle tissue for species of high conservation concern is often not appro-
priate. Tzadik et al. (2015) demonstrated the efficacy of a nonlethal approach in SIA 
studies involving Atlantic goliath grouper, with the use of dorsal fin rays that can 
be excised from the fish. Fin rays can be extracted without effects on fish survival 
and growth (Zymonas and McMahon 2006, Murie et al. 2009) and can regrow after 
being excised (Goss and Stagg 1957, Tzadik et al. 2015). Another advantage of using 
fin rays for trophic research is they allow the reconstruction of longer chronological 
histories of stable-isotope ratios (Estrada et al. 2006, Tzadik et al. 2015). Inner fin-ray 
layers lose vascularization and become encapsulated by growing outer layers, thus 
little to no turnover is expected (Sire and Huysseune 2003, Tzadik et al. 2017a). The 
ability to reconstruct life history information can further improve our understand-
ing of the trophic dynamics of consumers, including those of conservation concern. 
Such information is generally lacking for juvenile Atlantic goliath grouper across its 
distribution, and especially in Brazil.

In the current study, we measured how δ15N varied with length of juvenile Atlantic 
goliath grouper sampled across four different estuarine sites on the southeastern 
Atlantic coast of Brazil. Specifically, we asked: (1) Does δ15N increase with total 
length of juvenile Atlantic goliath grouper? and (2) Are observed changes in δ15N 
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consistent across estuarine sites? Estimating trophic growth of Atlantic goliath grou-
per, its changes with fish ontogeny during critical phases of their life cycle (e.g., as 
juveniles in nursery grounds), and spatial variability can provide important informa-
tion for better understanding the trophic role played by this endangered predator in 
coastal ecosystems. Our findings also provide baseline information for future moni-
toring programs and coastal management for this species.

Materials and Methods

This research was conducted in the São Mateus and Itaúnas estuaries on the south-
eastern Brazilian coast. We sampled juvenile Atlantic goliath grouper from four 
sites: (1) Barreiras (BA), (2) Pontal do Sul (PS), (3) Conceição da Barra (CB), and (4) 
Itaúnas (IT; Fig. 1). With the exception of IT, the other sites are located within the 
Environmental Protection Area of Conceição da Barra, which is a Sustainable Use 
Conservation Unit. CB is likely under substantial anthropogenic influence due to its 
adjacent proximity to a highly populated area (Conceição da Barra city with approxi-
mately 31,000 inhabitants, IBGE 2020). In contrast, IT is likely the least impacted 
site because it is within an Integral Protection Conservation Unit (Brasil 2000) and 
is located in a sparsely populated area with limited anthropogenic influences.

The sample collections were performed under license number 15080-7 provided 
by the Instituto Chico Mendes de Biodiversidade (ICMBio). Juvenile Atlantic goliath 
grouper were captured from March 2015 to November 2015 (n = 33) and from March 

Figure 1. Map showing the study area in Conceição da Barra, Espírito Santo, Brazil, and the 
sampling sites Conceição da Barra (CB, n = 18), Barreiras (BA, n = 30), Pontal do Sul (PS, n = 
48), and Itaúnas (IT, n = 5), where juvenile Atlantic goliath grouper Epinephelus itajara were (●) 
captured intentionally for this study and (■) captured accidentally by fishers and donated for the 
present study.
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2018 to October 2019 (n = 68). Individuals were captured using a variety of gears 
including baited blue crab traps and setlines deployed close to mangrove roots and 
rocks. We also received donations of live juvenile Atlantic goliath grouper acciden-
tally caught by artisanal fishers using a wide array of fishing gears, such as setlines, 
fishing rods, blue crab-traps, gill nets, cast nets, and surrounding nets.

All fish specimens (captured and donated) were measured for TL (mm), had their 
soft dorsal-fin rays 5–7 excised as close to the base as possible, and were released im-
mediately following sampling procedures (Tzadik et al. 2017a). The excised rays were 
stored at −20 °C until further analyses as this has been shown to not impart offsets in 
SIA of groupers (Stallings et al. 2015). Later, frozen fin rays were thawed in a drying 
oven for 4 hrs at a temperature of 55 °C. After drying, fatty tissue was removed from 
the rays and each fin ray was soaked in 30% hydrogen peroxide (H2O2) for 5 min to 
help with the removal of skin and membranes (complete details in Tzadik et al. 2015). 
According to the growth curve proposed by Bullock et al. (1992), most individuals 
were young-of-year (i.e., <1 yr old); therefore, dried whole fin rays were turned into 
a fine homogeneous powder using a mortar and pestle, representing the whole life 
of individuals. A 200–1200 μg sample of each ray was weighed on a Mettler-Toledo 
precision micro-balance and encapsulated in a tin capsule (Tzadik et al. 2015).

Stable isotope ratios of nitrogen (δ15N) were determined by Continuous Flow 
Elemental Analyzer Isotope Ratio Mass Spectrometry at the University of South 
Florida, College of Marine Science, Marine Environmental Chemistry Laboratory 
(Werner et al. 1999). Isotope compositions were measured on a Thermo Finnigan 
Delta Plus XL IRMS and are reported in per mil (‰) notation, and scaled to Air cali-
bration material (d15N). Secondary reference materials [NIST 8574 δ15N = +47.57‰ 
(SD 0.22‰), N = 9.52%; NIST 8573 δ15N = −4.52‰ (SD 0.12‰), N = 9.52%] were used 
to normalize raw measurements to the Air scale (Werner and Brand 2001, Qi et al. 
2003, Coplen et al. 2006). Measurement uncertainty, expressed as ±1 standard de-
viation of n = 10 measurements of a laboratory reference material [NIST 1577b δ15N 
= 7.83‰ (SD 0.16‰), N = 9.95 ± 0.48) was 0.18‰. We did not analyze carbon stable 
isotope (δ13C) ratios because prior studies suggested bias in the determination of this 
isotope tracer in dorsal fin rays of Atlantic goliath grouper (Tzadik et al. 2015, 2017b).

Linear mixed models (Gaussian distribution) were used to estimate the relation-
ship between δ15N isotope values and both TL and collection location. Since col-
lections were made in two time periods (2015 and 2018–2019), we first examined 
the effect of year and found it was not significant after accounting for both TL and 
collection location (F1,93 = 2.76, P = 0.10). Next, we tested the interactive effect of 
TL and location (as fixed effects), which was not significant (F3,91 = 0.52, P = 0.67), 
so we used an additive model with individual fish as a random effect. The models 
were conducted in R v4.1.0 (R Core Team 2021) and plotted with the ggplot2 package 
(Wickham 2016).

Results

In total 100 juvenile Atlantic goliath grouper were analyzed due to the exclusion of 
one outlier value (δ15N = 7.49 from CB), although none of the statistical interpreta-
tions were influenced by its inclusion. Fish lengths ranged from 95 mm to 505 mm 
TL, with the lowest mean length observed in the PS [236.7 (SE 15.9)] and the highest 
in the IT sites [373.6 (SE 40.1); Table 1].
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Measured values of δ15N in juvenile Atlantic goliath grouper ranged from 10.03‰ 
to 15.62‰, with the highest and lowest mean values observed in the CB and IT sites, 
respectively (Table 1). A positive relationship was observed between juvenile Atlantic 
goliath grouper length and δ15N (F1,94 = 19.33, P < 0.01) and the rate of change was 
consistent across areas (interaction term: F3,91 = 0.52, P = 0.67; Fig. 2). The δ15N values 
differed among areas (F3,94 = 8.78, P < 0.01), and a posthoc Tukey test revealed this 
was largely due to lower values at IT compared to the other three areas (all pairwise 
tests with IT: P < 0.01).

Discussion

In this study, we have shown that δ15N scaled positively with length of juvenile 
Atlantic goliath grouper and that this relationship was consistent across spatially 
separated locations. This work fills a gap in our understanding about the trophic 
ecology of juvenile Atlantic goliath grouper and is the first effort to do so in Brazil. 
Although ontogenetic increases in trophic position in fish is common (Estrada et al. 
2006, Kurth et al. 2019) and is often correlated with increasing body length due to 
expected 15N enrichment in their tissues as they feed on larger prey up the food webs 
(Condini et al. 2011, Iitembu et al. 2012, Park et al. 2018, Faletti and Stallings 2021), 
the increase in this study was rather slow, being less than one trophic level across 
the entire length range of sampled fish. This result suggested that juvenile Atlantic 

Table 1. Mean (SE) total length (TL) and δ15N of sampled Epinephelus itajara (n = 101) by site. 
Pontal do Sul (PS), Barreiras (BA), Conceição da Barra (CB), and Itaúnas (IT). The far-right col-
umn reports the TL coefficients (SE) for its modeled relationship with δ15N.

Sites n TL (mm) δ15N TL coef (SE)
Mean (SE) Range  Mean (SE) Range

PS 48 236.7 (15.9) 95–505 12.45 (0.17) 10.03–14.97 0.005 (0.001)
BA 30 239.0 (10.3) 156–431 12.24 (0.20) 10.63–14.59 0.008 (0.003)
CB 17 311.1 (6.0) 140–500 13.18 (0.30) 11.18–15.62 0.003 (0.003)
IT 5 373.6 (40.1) 249–460 11.11 (0.24) 10.17–12.77 0.005 (0.002)

Figure 2. Values of δ15N from juvenile Atlantic goliath grouper fin rays plotted against total 
length (TL, mm) with fitted generalized linear mixed model trendline (gray envelope = 95% CI), 
separated by study sites from which fish were caught.
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goliath grouper fed within approximately the same level in the local food webs, mak-
ing gradual changes to slightly higher positions. This slow trophic growth was ex-
pected for juvenile Atlantic goliath grouper, given that previous studies have shown 
their diets consist primarily of small, low trophic-level benthic organisms, such as 
crustaceans throughout their life (Koenig and Coleman 2009, Artero et al. 2015, 
Freitas et al. 2015). We also sampled a relatively small size range of juvenile Atlantic 
goliath grouper since they can be found in mangrove habitats at total lengths up 
to 1000 mm (Koenig et al. 2007), thus our results do not capture their full trophic 
ontogeny during this stage of their life history. Future work should target larger juve-
niles to address this knowledge gap.

In addition to slow but consistent trophic growth, we also observed notably lower 
δ15N values at IT compared to the other three areas. These observed differences in 
trophic baselines likely reflected a stronger influence of nutrient inputs from anthro-
pogenic activities at the southern sites. Anthropogenic activities associated with ur-
banization and industrialization create potential problems in coastal areas such as 
mangroves and estuaries (Elliott and Whitfield 2011). Untreated anthropogenic ef-
fluents usually have higher values ​​of δ15N compared to nearby locations free of them 
or where human activities are relatively low (Lassauque et al. 2010). For instance, 
Souza et al. (2018) evaluated anthropogenic impacts on two contrasting mangrove 
food webs by using multiple stable isotopes measured in sediments, mangrove trees, 
plankton, shrimps, crabs, oysters, and fish. They observed higher δ15N across the 
food web in the estuary closest to intensive human activities, apparently influenced 
by sewage. Our findings are consistent with Souza et al. (2018). For example, the São 
Mateus River receives a significant number of pollutants along its course, mostly 
as runoff from agricultural areas upstream and domestic wastewater downstream 
(Cotta et al. 2017). The problem is worsened when the river waters reach Conceição da 
Barra City (adjacent to the CB sampling site), which has a deficient sewage treatment 
system (Conceição da Barra 2017). Coincidently, lower δ15N values were observed in 
the site surrounded by a sparsely populated area with limited anthropogenic influ-
ences (IT). Prior work elsewhere has suggested that nutrient pollution could be a rea-
son for δ15N enrichment in the juvenile phase of Atlantic goliath grouper (Lapointe 
et al. 2005, Tzadik et al. 2015) and similar conclusions have been drawn for other 
groupers and mesopredators (Curtis et al. 2020). Further investigation is needed to 
identify the potential influence of human impacts (untreated sewage input and other 
nitrogen pollution sources) to avoid overestimation in trophic enrichment of juvenile 
Atlantic goliath grouper in estuaries.

The nonlethal methodology of using fin rays applied in this study causes minimal 
effects to fish. Tzadik et al. (2015) recaptured several individuals with baited hooked 
gears the same day after having their fin rays excised, suggesting maintenance of 
their feeding behavior within hours of being sampled. This has also been corroborat-
ed in the current study by the recapture of individuals, using baited blue crab traps, 
the same day and weeks after sampling, confirming their recovery and survival to the 
procedure (L Lopes Almeida, unpubl data).

Although a small sample size is a limitation commonly observed when working 
with endangered and protected species (Frias-Torres 2006), this study was possible 
due to the combination of using a nonlethal method and a long-standing and reli-
able partnership with artisanal fishers from traditional communities, who donated 
live accidentally captured Atlantic goliath grouper individuals. This partnership 
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between researchers and local citizens shows that local engagement is an important 
asset toward successful management (Silva et al. 2021) and the protection of biodi-
versity. Furthermore, this was the first study to our knowledge on the trophic ecol-
ogy of juvenile Atlantic goliath grouper off South America, an important region for 
the southern extent of the species distribution. Future studies are needed to further 
evaluate the trophic role of this endangered predatory fish, especially during its early 
development in nursery habitats.
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