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levels. Combined with observations from other locations in 
the Caribbean, it appears that D. antillarum populations are 
increasing, yet have not fully recovered from their 1980s 
mass mortality throughout much of their geographic range.
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Introduction

In 1983–1984, the long-spined urchin (Diadema antillarum) 
experienced a massive mortality event likely caused by an 
unknown waterborne pathogen (Lessios 1988). This die-off 
began near Panama (Lessios 1983) and then spread through-
out the Caribbean and western tropical Atlantic, resulting in 
a 98% average reduction in D. antillarum populations across 
the region (Lessios 1988). D. antillarum is an ecologically 
important herbivore (Ogden 1973). Combined with overfish-
ing of parrotfishes and other herbivorous fishes, the drastic 
decline in D. antillarum corresponded with a rapid prolif-
eration of macroalgae and a decline in corals on many reefs 
(Liddell and Ohlhorst 1986; Knowlton, 2001; Carpenter and 
Edmunds 2006). The loss of D. antillarum populations is 
considered one of the major factors that have led to the over-
all degradation of coral reefs in the region over the last few 
decades (Knowlton, 2001).

During the four decades since the die-off, recovery of D. 
antillarum has been slow and variable. Among other fac-
tors such as low post-settlement survival (Williams et al. 
2011), the presumed reason for the slow recovery has been 
an absence of source populations resulting in minimal larval 
production (Lessios 1988; 1995, Miller et al. 2009). In the 
mid to late 1990s, approximately 15 years after the die-off, 
recovery began in several isolated locations. For example, in 
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Jamaica D. antillarum increased to pre-mortality densities 
around 2000 (Edmunds and Carpenter 2001), but with local 
variability (Cho and Woodley 2000). The increasing den-
sities of D. antillarum in Jamaica corresponded with both 
a large reduction in macroalgae abundance (Edmunds and 
Carpenter 2001) and increased survival and faster growth of 
scleractinian corals (Idjadi et al. 2010). Beyond Jamaica, the 
recovery of urchin populations has been slower, e.g., Barba-
dos, St. Croix, (Miller et al. 2003), and Puerto Rico (Tuohy 
et al. 2020), with many populations still below pre-mortality 
densities. Other locations, such as the Florida Keys (Chi-
appone et al. 2002; Miller et al. 2009) and Panama (Lessios 
2005), have not experienced any observed recovery, poten-
tially due to low or inconsistent recruitment.

The majority of studies on D. antillarum populations 
have occurred within the Caribbean Sea proper (Carpenter 
and Edmunds 2006), and to date, there has been no docu-
mentation of urchin recovery outside of this region (i.e., in 
the greater tropical western Atlantic). The Bahamian Archi-
pelago, located adjacent to and northeast of the Caribbean 
region, had notable population sizes of D. antillarum con-
sistent with those observed across the broader region prior 
to the mass mortality event (Ray 1958; Newell et al. 1959; 
Bauer 1980; Hay 1984), but densities have remained low 
through the 2000s (Harborne et al. 2009). The goal of this 
study was to examine changes in the density of D. antil-
larum in the central Bahamas over a 25-year period from 
1991 to 2015.

Methods

We recorded D. antillarum abundances on three types of 
shallow (< 5 m depth) patch reefs during the early summer 
from 1991 to 2015 as part of annual surveys of the regional 
reef community. These surveys recorded all vertebrates, sev-
eral invertebrate species (e.g., urchins, lobster), as well as 
unquantified descriptions of other notable features. Reefs 
were located within 7 km of Lee Stocking Island, Baha-
mas (Fig. 1), and ranged in size from 1.0–13.1 m2. The first 
type of reef, hereafter natural patch reefs (n = 9), was coral 
bommies (6.0 – 13.1 m2, 9.4 ± 1.3 [mean ± standard error]) 
found on sand and limestone benches at depths between 2 
and 4 m. Each was approximately 50 m from the nearest 
adjacent reef and remained unmanipulated for the entire 
25-year period. The other types of reefs formed an experi-
mental array (established in the early 1990s) of 1 m2 con-
crete-block artificial reefs (n = 16) and 3.5 m2 translocated 
coral patch reefs (n = 32) arranged in a sand-seagrass flat 
with each reef at least 200 m from the nearest reef. The 
artificial reefs rapidly became colonized by corals, sponges, 
and other benthos as well as fishes (Carr and Hixon 1997). 
The translocated patch reefs consisted of ≥ 0.5 m diameter 

coral heads of Orbicella annularis and Porites astreoides 
(see Carr and Hixon 1995; Hixon and Carr 1997 for a full 
description). While the experimental array has been used for 
experimental manipulations of reef fishes (e.g., Hixon and 
Carr 1997), D. antillarum and their predators (e.g., queen 
triggerfish, Balistes vetula) have never been manipulated. 
Across the 25-year study, we conducted visual surveys on 
the natural patch reefs over 22 years and on the artificial and 
translocated reefs over 15 years. Surveys were conducted 
during the day when two divers using SCUBA counted all 
D. antillarum on the reefs, thoroughly inspecting all holes 
and crevices with the aid of a dive light to ensure that all 
urchins were counted.

We used generalized linear mixed models (GLMM) to 
describe the change in urchin density as a function of the 
fixed effect of time (years) and the random effect of reef 
identification. We conducted a separate analysis for natu-
ral patch, artificial, and translocated reefs because we were 
interested in the change in D. antillarum density over time, 
controlling for reef types. See Appendix I for a full descrip-
tion of our statistical methods and R packages used. All anal-
yses were conducted within the R statistical environment (R 
Core Team 2021, version 4.1.2).

Results and discussion

Over the 25-year study period, we observed the lowest den-
sities, mostly < 1 urchin m−2, during the first 10 years of 
monitoring (i.e., the 1990s) and then higher D. antillarum 
densities in the 2000s (Fig. 2). Several recruitment pulses 
occurred in the 1990s (Fig. 2ab), but these episodic events 
did not result in sustained population growth, similar to 
pulses observed in St. Croix (Miller et al. 2003), Panama, 
and the Florida Keys (reviewed by Lessios 2016). Sus-
tained population growth developed toward the end of our 
study, despite persistent low densities on the natural patch 
and translocated reefs in 2015 (Fig. 2a b) that did not affect 
the overall pattern. The high variation among reefs is not 
surprising given the small size of individual reefs, and is 
likely representative of reefs in this region which is domi-
nated by small patch reefs. We found a significant popula-
tion growth rate of D. antillarum on the natural patch and 
translocated reefs (Fig. 2, Supplemental Tables 1, 2). On 
natural patch reefs, D. antillarum density increased on aver-
age by 8% per year (95% confidence interval [CI]: 4%–14%), 
while on translocated reefs they increased by 17% per year 
(95% CI: 9%–26%). While some of the highest densities 
were observed on the artificial reefs, we did not detect a 
significant increase in D. antillarum on them (Fig. 2b). Yet, 
we did document large local population pulses in 1996 and 
2015 (Fig. 2b). This pattern may be due to the cinder block 
construction that created numerous holes in a small area 
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(Fig. 1). At the end of our study, the observed mean densities 
were 0.24 urchins m−2 (95% CI: 0.03–1.76) on natural patch 
reefs, 0.38 urchins m−2 (95% CI: 0.11–1.32) on artificial 
reefs, and 0.06 urchins m−2 (95% CI: 0.02–0.22) on trans-
located reefs. In comparison, pre-mortality densities of D. 
antillarum in the Bahamas ranged from < 1 urchin m−2 (Hay 
1984) to 2.9 urchins m−2 (Bauer 1980), both higher than 
our mean densities. Though not directly quantified in their 
reports, both Ray (1958) and Newell et al. (1959) included 
photographs that showed clearly high densities of D. antil-
larum, and Newell et al. (1959) qualitatively described the 
urchins as being “abundant.” Nonetheless, we observed 
higher urchin densities on all reef types during our study 
than the first post-mortality census of 0.006 urchins m−2 

from 1997–1998 (Kramer 2003) and 0.04 urchins m−2 in 
2007 (Harborne et al. 2009). Although not from our spe-
cific study location, the previously reported densities from 
throughout the Bahamas suggest general patterns and trends 
for the region and represent the best available compari-
son. More surveys on larger reef systems across the entire 
Bahamas, as well as the greater Caribbean, would provide 
a clearer trend of D. antillarum populations in the region. 
Nevertheless, our study is the first to document a long-term 
trend in urchin density in the Bahamas, which indicated the 
start of a recovery.

The slow pace of recovery of D. antillarum populations 
in the Bahamas could be due to a number of abiotic or 
biotic factors. Successful recruitment, driven by upstream 
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Fig. 1   Map of study locations in the Bahamas and photographs of 
example reef types that show natural patch reefs (circles), artificial 
(square), and translocated (triangles) reefs. At the map scale, three of 

the natural patch reefs appear as overlapping circles, and extra spac-
ing was included for visualization of the artificial and translocated 
reefs
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larval sources, larval survival, successful settlement, and 
juvenile survival are all critically important. Given the 
moderate isolation between the Bahamas and the Carib-
bean (e.g., Cowen et al. 2006, Galindo et al. 2006; but 
see Schill et al. 2015), there may be few upstream larval 
sources. Thus, it is unlikely that the growing populations 
in Jamaica or St. Croix would serve as a larval source 
based on prevailing ocean currents (Lessios et al. 1984; 
Lessios 1988). Self-recruitment from local populations in 
the Exuma Sound may be the best source to sustain the 
population in the future (Colin 1995), due to its impor-
tance for other species in this region: the bicolored dam-
selfish Stegastes partitus (Pusack et al. 2014; Johnson 
et al. 2018) and the spiny lobster Panulirus argus (Lipcius 
et al. 2001; Stockhausen and Lipcius 2001). Therefore, 
it is likely that low adult D. antillarum densities in the 
Exuma Sound have limited capacity for rapid recovery, 
and improved population growth will require populations 
to reach larger sizes.

Recovery of D. antillarum is also influenced by factors 
affecting juvenile survival, such as availability of suitable 
habitat (Miller et al. 2003; Debrot and Nagelkerken 2006), 
and post-settlement predation (Harborne et al. 2009; Williams 
et al. 2011). Most of the individuals we recorded were adults, 
with only 0.04% being juveniles. The rarity of juveniles on 
our study reefs suggests that settlement has been low and pos-
sibly limited to other shallow, wave-protected back reefs or 
lagoons (Debrot and Nagelkerken 2006), which are numer-
ous in the Bahamas. We observed D. antillarum predators 
(e.g., Balistes spp. triggerfishes) primarily on the translocated 
reefs compared to our other reef types. The densities of these 
predators were inversely related to that of D. antillarum with 
a clear decline in total abundance of B. vetula during the study 
(Supplemental Fig. 1). Thus, triggerfishes and other preda-
tors that consume urchins may have played a role in limiting 

the recovery of D. antillarum populations, but it is unclear to 
what extent.

In spring 2022, widespread mortality of D. antillarum was 
first reported in St. Thomas and subsequent reports occurred 
throughout the Antilles (AGRRA 2022). There have not been 
any reports of this ongoing die-off in the Bahamas, but if it 
happens, then recovery in the region will likely slow or even 
reverse. Documenting new occurrences of death or recovery 
of D. antillarum across the Caribbean and tropical western 
Atlantic is critical for management of coral reefs. As an impor-
tant herbivore on overfished and degraded coral reefs, larger 
densities of D. antillarum can reduce macroalgal cover (e.g., 
Carpenter and Edmunds 2006; Williams 2021). We did not 
quantify algal cover on the natural patch reefs, but qualitative 
notes suggest an inverse relationship with D. antillarum densi-
ties. However, we also occasionally observed little to no algae 
on reefs lacking D. antillarum and reefs covered in algae that 
had moderate to high urchin densities. Combining long-term 
monitoring of D. antillarum with corresponding data such as 
predator abundance and benthic habitat composition will help 
identify factors that promote urchin recovery and better under-
stand how coral reef systems ultimately respond. Collecting 
more data from the Bahamas and other locations peripheral 
to the Caribbean Sea will elucidate the long-term population 
dynamics of this ecologically important species. This task is 
especially critical considering the potential of another large-
scale die-off that may be starting. Large decline in D. antil-
larum would likely result in increased macroalgal cover and 
further stress to already degraded Caribbean coral reefs.
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Fig. 2   Diadema antillarum density across the 25-year study period 
at each a natural patch reef—circles, b artificial reef—squares, and 
c translocated reef—triangles. Solid black curves show the predic-
tion based on the model from Table 2 with 95% confidence intervals 

shown with the gray shaded regions. Points jittered to avoid overlap 
for visualization. Surveys were not conducted in years without data 
points
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